K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2016

= (1+1/3+1/5+…+1/99)-(1/2+1/4+….+1/100)

= (1+1/2+1/3+…+1/100)-2(1/2+1/4+1/6+…+1/100)

= (1+1/2+1/3+…+1/100)-(1+1/2+1/3+…+1/50)

=1/51+1/52+…+1/100=VP (đpcm)

21 tháng 5 2016

= (1+1/3+1/5+…+1/99)-(1/2+1/4+….+1/100)

= (1+1/2+1/3+…+1/100)-2(1/2+1/4+1/6+…+1/100)

= (1+1/2+1/3+…+1/100)-(1+1/2+1/3+…+1/50)

=1/51+1/52+…+1/100=VP (đpcm)

11 tháng 5 2017

1 - 1/2 + 1/3 - 1/4 +...+ 1/99 - 1/100

= (1 + 1/3 +...+ 1/99) - (1/2 + 1/4 +...+ 1/100)

= (1+1/2+1/3+...+1/100) - 2(1/2+1/4+...+1/100)

= (1+1/2+1/3+...+1/100) - (1+1/2+...+1/50)

= 1/51+1/52+...+1/100 (đpcm)

12 tháng 5 2017

thanks very muchokhehe

24 tháng 8 2018

Ta có:
(1+1/3+1/5+...+1/99) - (1/2+1/4+1/6+...+1/100)
= (1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/100...-2(1/2+1/4+1/6+...+1/100) (tức là ta tự cộng thêm vào dấu ngoặc đầu 1/2+1/4+1/6+...+1/100 thì phải trừ bớt ra 1/2+1/4+1/6+...+1/100 do đó ta ghép vào dấu ngoặc sau nên thêm vào số 2 đằng trước dấu ngoặc sau )
=(1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/100...- (1+1/2+1/3+...+1/50) (ta nhân phân phối số 2 vào ngoặc sau làm các mẫu giảm 2 lần)
=1/51+1/52+1/53+...+1/100 (đpcm)

24 tháng 1 2024

T_T

14 tháng 7 2017

\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)

Đặt A= \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\)

=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{50}\right)\)

= \(\left(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}\right)\)

14 tháng 7 2017

cảm ơn bạn

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(\RightarrowĐPCM\)

24 tháng 3 2016

giúp tui phần b bài này

14 tháng 2 2016

Dễ thì trình bày thử coi.

27 tháng 4 2017

Đề sai tại vì:

Ta thấy từ: \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{99}\) mỗi số hạng đều lớn hơn \(\frac{1}{100}\)

Mà tổng trên có : ( 100 - 51 ) + 1 = 50 ( số hạng )

Nên:

\(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}.50=\frac{50}{100}=\frac{1}{2}\)

Vậy : \(A>\frac{1}{2}\)