Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 - 1/2 + 1/3 - 1/4 +...+ 1/99 - 1/100
= (1 + 1/3 +...+ 1/99) - (1/2 + 1/4 +...+ 1/100)
= (1+1/2+1/3+...+1/100) - 2(1/2+1/4+...+1/100)
= (1+1/2+1/3+...+1/100) - (1+1/2+...+1/50)
= 1/51+1/52+...+1/100 (đpcm)
Từ 50 đến 99 có 50 số; ta cho tất cả các phân số đó về 1/100; ta có 50/100 = 1/2; còn dư một số phần chênh giữa 1/100 va các phân số đó.
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{1}{100}.50=\frac{1}{2}\)
Vậy \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>\frac{1}{2}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}
VÌ 1/1.1/3.......1/99=2/51.2/52.........2/100
VÀ 2/51.2/52.....2/100=1/1.1/3.......1/99
SUY RA BẰNG NHAU
= (1+1/3+1/5+…+1/99)-(1/2+1/4+….+1/100)
= (1+1/2+1/3+…+1/100)-2(1/2+1/4+1/6+…+1/100)
= (1+1/2+1/3+…+1/100)-(1+1/2+1/3+…+1/50)
=1/51+1/52+…+1/100=VP (đpcm)
= (1+1/3+1/5+…+1/99)-(1/2+1/4+….+1/100)
= (1+1/2+1/3+…+1/100)-2(1/2+1/4+1/6+…+1/100)
= (1+1/2+1/3+…+1/100)-(1+1/2+1/3+…+1/50)
=1/51+1/52+…+1/100=VP (đpcm)
Đề sai tại vì:
Ta thấy từ: \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{99}\) mỗi số hạng đều lớn hơn \(\frac{1}{100}\)
Mà tổng trên có : ( 100 - 51 ) + 1 = 50 ( số hạng )
Nên:
\(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}.50=\frac{50}{100}=\frac{1}{2}\)
Vậy : \(A>\frac{1}{2}\)