Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\sqrt{x}+3}{\sqrt{x}+1}+\frac{5}{\sqrt{x}-1}+\frac{4}{x-1}\)
\(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)+5\sqrt{x}+5+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(\frac{x+3\sqrt{x}-\sqrt{x}-3+5\sqrt{x}+9}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(\frac{x+7\sqrt{x}+6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(\frac{x+6\sqrt{x}+\sqrt{x}+6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(\frac{\sqrt{x}\left(\sqrt{x}+1\right)+6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(\frac{\sqrt{x}+6}{\sqrt{x}-1}\)
a) đk: \(x\ge2\)
Ta có: \(\sqrt{x}+\sqrt{x-2}=2\sqrt{x-1}\) (đã sửa đề)
\(\Leftrightarrow x+2\sqrt{x\left(x-2\right)}=4\left(x-1\right)\)
\(\Leftrightarrow3x-4=2\sqrt{x^2-2x}\)
\(\Leftrightarrow9x^2-24x+16=4\left(x^2-2x\right)\)
\(\Leftrightarrow5x^2-16x+16=0\)
\(\Leftrightarrow5\left(x^2-\frac{16}{5}x+\frac{64}{25}\right)+\frac{16}{5}=0\)
\(\Leftrightarrow5\left(x-\frac{8}{5}\right)^2=-\frac{16}{5}\) vô lý
=> PT vô nghiệm
b) Đề chắc là: \(x^2+x+12=\sqrt{36}\)
\(\Leftrightarrow x^2+x+12-6=0\)
\(\Leftrightarrow\left(x^2+x+\frac{1}{4}\right)+\frac{23}{4}=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=-\frac{23}{4}\) vô lý
=> PT vô nghiệm
ĐẶT x-1=a , x+3=b (a,b cùng dấu)
\(PT\Leftrightarrow ab+2a\sqrt{\frac{b}{a}}=8\)
\(\Leftrightarrow2a\sqrt{\frac{b}{a}}=8-ab\)
\(\Leftrightarrow4a^2\frac{b}{a}=64-16ab+a^2b^2\)
\(\Leftrightarrow a^2b^2-20ab+64=0\)
\(\Leftrightarrow\left(ab-10\right)^2-36=0\)
\(\Leftrightarrow\left(ab-4\right)\left(ab-16\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}ab=4\\ab=16\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)\left(x+3\right)=4\\\left(x-1\right)\left(x+3\right)=16\end{cases}}\)
Đến đây đơn giản rồi bn tự giải nhé
ĐK:....\(\frac{x+3}{x-1}\ge0\)
<=> \(\left(x-1\right)\left(x+3\right)+2\sqrt{\left(x-1\right)\left(x+3\right)}+1=9\)
<=> \(\left(\sqrt{\left(x-1\right)\left(x+3\right)}+1\right)^2=9\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{\left(x-1\right)\left(x+3\right)}=2\\\sqrt{\left(x-1\right)\left(x+3\right)}=-4\left(loai\right)\end{cases}}\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=4\)
Em tự làm tiếp nhé
à hiểu ý chủ thớt rồi :))
Đặt \(\sqrt{x+5}=y-2\) thì dc hệ đối xứng loại 2
Ta có: \(\dfrac{2\sqrt{x}+3-x}{x-1}=1\)
\(\Leftrightarrow-x+2\sqrt{x}+3=x-1\)
\(\Leftrightarrow-x+2\sqrt{x}+3-x+1=0\)
\(\Leftrightarrow-2x+2\sqrt{x}+4=0\)
\(\Leftrightarrow-2\left(x-\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)=0\)
hay x=4
Đề là ri phải ko bn:\(\dfrac{2\sqrt{x+3}-x}{x-1}=1\)