Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có:
f(x) = -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2
= 2x3 + 3x2 - 2x + 3 (0.5 điểm)
g(x) = 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2
= 2x3 + 3x2 - 7x + 2 (0.5 điểm)
\(f\left(x\right)=x^3-2x^2+3x+2\)
\(g\left(x\right)=-x^3-3x^2+2\)
a, Thu gọn: F(x) = – 5x3 + 6x2 + 3x – 1; G(x) = – 5x3 + 6x2 + 4x + 2
b, Tìm được:M(x) = F(x) – G(x) = – x – 3 ;
N(x) = F(x) + G(x) = – 10x3 + 12x2 + 7x + 1
c, Nghiệm của đa thức M(x): x = – 3
Giải:
a) Thu gọn và sắp xếp:
\(F\left(x\right)=5x^2-1+3x+x^2-5x^3\)
\(\Leftrightarrow F\left(x\right)=6x^2-1+3x-5x^3\)
\(\Leftrightarrow F\left(x\right)=-5x^3+6x^2+3x-1\)
\(G\left(x\right)=2-3x^3+6x^2+5x-2x^3-x\)
\(\Leftrightarrow G\left(x\right)=2-5x^3+6x^2+4x\)
\(\Leftrightarrow G\left(x\right)=-5x^3+6x^2+4x+2\)
b) \(M\left(x\right)=F\left(x\right)-G\left(x\right)\)
\(\Leftrightarrow M\left(x\right)=-5x^3+6x^2+3x-1-\left(-5x^3+6x^2+4x+2\right)\)
\(\Leftrightarrow M\left(x\right)=-5x^3+6x^2+3x-1+5x^3-6x^2-4x-2\)
\(\Leftrightarrow M\left(x\right)=-x-3\)
\(N\left(x\right)=F\left(x\right)+G\left(x\right)\)
\(\Leftrightarrow N\left(x\right)=-5x^3+6x^2+3x-1+\left(-5x^3+6x^2+4x+2\right)\)
\(\Leftrightarrow N\left(x\right)=-5x^3+6x^2+3x-1-5x^3+6x^2+4x+2\)
\(\Leftrightarrow N\left(x\right)=-10x^3+12x^2+7x+1\)
c) Để đa thức M(x) có nghiệm
\(\Leftrightarrow M\left(x\right)=0\)
\(\Leftrightarrow-x-3=0\)
\(\Leftrightarrow-x=3\)
\(\Leftrightarrow x=-3\)
Vậy ...
a: f(x)=x^3-2x^2+2x-5
g(x)=-x^3+3x^2-2x+4
b: Sửa đề: h(x)=f(x)+g(x)
h(x)=x^3-2x^2+2x-5-x^3+3x^2-2x+4=x^2-1
c: h(x)=0
=>x^2-1=0
=>x=1 hoặc x=-1
a, P(x)=(2x^3-x^3)+x^2+(3x-2x)+2=x^3+x^2+x+2
Q(x)=(3x^3-4x^3)+(5x^2-4x^2)+(3x-4x)+1=-x^3+x^2-x+1
b, M(x)=P(x)+Q(x)=x^3+x^2+x+2+(-x^3)+x^2-x+1=2x^2+3
N(x)=P(x)-Q(x)=x^3+x^2+x+2-(-x^3+x^2-x+1)=2x^3+2x+1
c, M(x)=2x^2+3
do x^2>=0 với mọi x=2x^2>=0
nên 2x^2+3>=3 với mọi x
để M(x) có nghiệm thì phải tồn tại x để M(x)=0 ( vô lý vì M(x)>=3 với mọi x)
do đó đa thức M(x) không có nghiệm
a, Thu gọn và sắp xếp theo lũy thừa giảm dần của biến :
* \(F_{\left(x\right)}=5x^2-1+3x+x^2-5x^3\)
\(=-5x^3+6x^2+3x-1\)
* \(G_{\left(x\right)}=2-3x^3+6x^2+5x-2x^3-x\)
\(=-5x^3+6x^2+4x+2\)
b, Ta có :
* \(M_{\left(x\right)}=F_{\left(x\right)}-G_{\left(x\right)}\)
\(\Rightarrow M_{\left(x\right)}=\left(-5x^3+6x^2+3x-1\right)-\left(-5x^3+6x^2+4x+2\right)\)
\(=-5x^3+6x^2+3x-1+5x^3-6x^2-4x-2\)
\(=-x-3\).
* \(N_{\left(x\right)}=F_{\left(x\right)}+G_{\left(x\right)}\)
\(\Rightarrow N_{\left(x\right)}=\left(-5x^3+6x^2+3x-1\right)+\left(-5x^3+6x^2+4x+2\right)\)
\(=-5x^3+6x^2+3x-1-5x^3+6x^2+4x+2\)
\(=-10x^3+12x^2+7x+1\).
c, Để tìm nghiệm của đa thức \(M_{\left(x\right)}\) ta đặt \(M_{\left(x\right)}=0\) vào \(M_{\left(x\right)}=-x-3\) thì ta được :
\(-x-3=0\)
\(\Leftrightarrow-x=3\)
\(\Leftrightarrow x=-3\)
Vậy nghiệm của đa thức \(M_{\left(x\right)}\) là \(x=-3\).
b)M(x)=F(x)-G(x)
F(x)-G(x)=(-5x3 -6x2 + 3x - 1) - (-5x3 + 6x2 + 4x + 2)
=-5x3 - 6x2 + 3x - 1 - 5x3 - 6x2 - 4x - 2
=(-5x3 - 5x3) + (-6x2 - 6x2) + (3x - 4x) + (-1 - 2)
=-10x3 - 12x2 - 1x - 3
Vậy M(x)=-10x3 - 12x2 - 1x - 3
N(x)=F(x)+G(x)=(-5x3 - 6x2 + 3x - 1) + (-5x3 + 6x2 + 4x + 2)
=-5x3 - 6x2 + 3x - 1 + (-5x3) + 6x2 + 4x + 2
=-5x3 + (-5x3) + (-6x2 + 6x2) + (3x + 4x) + (-1 + 2)
=-10x3 + x2 + 7x + 1
-Chúc bạn học tốt nhaaa