K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2022

Câu 1:

\(y=2\cdot\left(\dfrac{1}{2}sinx-cos\cdot\dfrac{\sqrt{3}}{2}\right)=2\cdot sin\left(x-\dfrac{pi}{3}\right)\)

=>-2<=y<=2

y=2 khi x-pi/3=pi/2+k2pi

=>x=5/6pi+k2pi

NV
14 tháng 3 2019

\(A=\int\limits^{0.5}_{-0.5}cos\left[ln\left(\frac{1-x}{1+x}\right)\right]dx\) hay \(A=\int\limits^{0.5}_{-0.5}cos\left[\frac{ln\left(1-x\right)}{1+x}\right]dx\)

Dù thế nào thì có lẽ người ra đề cũng nhầm lẫn, đây là 1 bài toán ko thể giải quyết trong chương trình phổ thông, nếu hàm là hàm sin chứ ko phải cos thì còn có cơ hội làm được trong chương trình 12

Tích phân sửa lại như sau thì giải quyết được bằng phương pháp thông thường:

\(A=\int\limits^{0.5}_{-0.5}sin\left[ln\left(\frac{1-x}{1+x}\right)\right]dx\)

Vì hàm dưới dấu tích phân là hàm lẻ nên chỉ cần đặt \(x=-t\) sau đó đổi biến và cộng lại là suy ra ngay lập tức \(A=0\)

\(B=\int\limits^{\frac{\pi}{2}}_0\frac{cos^3x}{cos^3x+sin^3x}dx\) (1)

Đặt \(\frac{\pi}{2}-x=t\Rightarrow dx=-dt;\left\{{}\begin{matrix}x=0\Rightarrow t=\frac{\pi}{2}\\x=\frac{\pi}{2}\Rightarrow t=0\end{matrix}\right.\)

\(B=\int\limits^0_{\frac{\pi}{2}}\frac{sin^3t}{sin^3t+cos^3t}\left(-dt\right)=\int\limits^{\frac{\pi}{2}}_0\frac{sin^3t}{sin^3t+cos^3t}dt=\int\limits^{\frac{\pi}{2}}_0\frac{sin^3x}{sin^3x+cos^3x}dx\) (2)

Cộng vế với vế của (1) và (2):

\(2B=\int\limits^{\frac{\pi}{2}}_0\frac{sin^3x+cos^3x}{sin^3x+cos^3x}dx=\int\limits^{\frac{\pi}{2}}_0dx=\frac{\pi}{2}\Rightarrow B=\frac{\pi}{4}\)

c/ \(C=\int\limits^{\frac{\pi}{2}}_0\left(\sqrt{sinx}-\sqrt{cosx}\right)dx\) (1)

Đặt \(\frac{\pi}{2}-x=t\Rightarrow dx=-dt;\left\{{}\begin{matrix}x=0\Rightarrow t=\frac{\pi}{2}\\x=\frac{\pi}{2}\Rightarrow t=0\end{matrix}\right.\)

\(C=\int\limits^0_{\frac{\pi}{2}}\left(\sqrt{cost}-\sqrt{sint}\right)\left(-dt\right)=\int\limits^{\frac{\pi}{2}}_0\left(\sqrt{cost}-\sqrt{sint}\right)dt=\int\limits^{\frac{\pi}{2}}_0\left(\sqrt{cosx}-\sqrt{sinx}\right)dx\left(2\right)\)

Cộng vế với vế của (1) và (2):

\(2C=\int\limits^{\frac{\pi}{2}}_0\left(\sqrt{sinx}-\sqrt{cosx}+\sqrt{cosx}-\sqrt{sinx}\right)dx=0\)

\(\Rightarrow C=0\)

//Các dạng bài này đều giống nhau, nếu biểu thức đối xứng sin, cos và cận \(0;\frac{\pi}{2}\) thì đặt \(\frac{\pi}{2}-x=t\) rồi biến đổi và cộng lại

30 tháng 10 2017

Đáp án: B.

Các phương trình còn lại có nhiều hơn một nghiệm:

(x - 5)( x 2  - x - 12) = 0 có các nghiệm x = 5, 4, -3.

sin 2 x - 5sinx + 4 = 0 ⇔ sinx = 1, có vô số nghiệm

sinx - cosx + 1 = 0 có các nghiệm x = 0, x = 3 π /2

31 tháng 5 2019

Đáp án: B.

Các phương trình còn lại có nhiều hơn một nghiệm:

(x - 5)( x 2  - x - 12) = 0 có các nghiệm x = 5, 4, -3.

sin 2 x  - 5sinx + 4 = 0 ⇔ sinx = 1, có vô số nghiệm

sinx - cosx + 1 = 0 có các nghiệm x = 0, x = 3π/2.

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Từ sau khi đăng bài phiền bạn học cách gõ công thức toán, nhìn ntn rất rối mắt

1)

\(A=-\int\cot^2 xdx=-\int\frac{\cos ^2x}{\sin^2x}dx=-\int \frac{1-\sin^2x}{\sin^2x}dx=-\int\frac{dx}{\sin^2x}+\int dx\)

\(\Rightarrow A=\cot x+x+c\)

2)

\(B=\int xe^{-x}dx\). Đặt \(\left\{\begin{matrix} u=x\\ dv=e^{-x}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=dx\\ v=\int e^{-x}dx=-e^{-x}\end{matrix}\right.\)

\(\Rightarrow B=-xe^{-x}+\int e^{-x}dx=-xe^{-x}-e^{-x}+c\)

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Bài 3: Ta có

\(F(x)=\int f(x)dx=\int (2x+\sin x+2\cos x)dx=2\int xdx+\int \sin xdx+2\int \cos xdx\)

\(\Leftrightarrow F(x)=x^2-\cos x+2\sin x+c\)

\(F(0)=1\Rightarrow 0-1+0+c=1\Leftrightarrow c=2\)

\(\Rightarrow F(x)=x^2-\cos x+2\sin x+2\), tức đáp án A là đáp án đúng.

P/s: Mấy bải này rất dễ. Mình nghĩ cơ bản là bạn nên học thuộc bảng đạo hàm và tính chất nguyên hàm là sẽ ổn thôi.

16 tháng 3 2018

a) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) > 0 trên khoảng (-4; 0) và f’(x) < 0 trên khoảng (0; 4).

Hàm số đạt cực đại tại x = 0 và f C Đ  = 5

Mặt khác, ta có f(-4) = f(4) = 3

Vậy Giải sách bài tập Toán 12 | Giải sbt Toán 12

d) f(x) = | x 2  − 3x + 2| trên đoạn [-10; 10]

Khảo sát sự biến thiên và vẽ đồ thị của hàm số g(x) = x 2  – 3x + 2.

Ta có:

g′(x) = 2x − 3; g′(x) = 0 ⇔ x = 3/2

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên ta có đồ thị f(x) như sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đồ thị suy ra: min f(x) = f(1) = f(2) = 0; max = f(x) = f(−10) = 132

e) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) < 0 nên và f’(x) > 0 trên (π/2; 5π/6] nên hàm số đạt cực tiểu tại x = π/2 và f C T  = f(π/2) = 1

Mặt khác, f(π/3) = 2√3, f(5π/6) = 2

Vậy min f(x) = 1; max f(x) = 2

g) f(x) = 2sinx + sin2x trên đoạn [0; 3π/2]

f′(x) = 2cosx + 2cos2x = 4cos(x/2).cos3(x/2)

f′(x) = 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: f(0) = 0,

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta có: min f(x) = −2 ; max f(x) = 3√3/2

AH
Akai Haruma
Giáo viên
30 tháng 12 2017

*Đặt tên các biểu thức theo thứ tự lần lượt là A,B,C,D,E,F *

Câu 1)

Ta có: \(d(\cos x)=(\cos x)'d(x)=-\sin xdx\)

\(\Rightarrow -d(\cos x)=\sin xdx\)

\(\Rightarrow A=\int \sqrt{3\cos x+2}\sin xdx=-\int \sqrt{3\cos x+2}d(\cos x)\)

Đặt \(\sqrt{3\cos x+2}=t\Rightarrow \cos x=\frac{t^2-2}{3}\)

\(\Rightarrow A=-\int td\left(\frac{t^2-2}{3}\right)=-\int t.\frac{2}{3}tdt=-\frac{2}{3}\int t^2dt=-\frac{2}{3}.\frac{t^3}{3}+c\)

\(=-\frac{2}{9}t^3+c=\frac{-2}{9}\sqrt{(3\cos x+2)^3}+c\)

 

 

AH
Akai Haruma
Giáo viên
31 tháng 12 2017

Câu 2:

\(B=\int (1+\sin^3x)\cos xdx=\int \cos xdx+\int \sin ^3xcos xdx\)

\(=\int \cos xdx+\int \sin ^3xd(\sin x)\)

\(=\sin x+\frac{\sin ^4x}{4}+c\)

Câu 3:

\(C=\int \frac{e^x}{\sqrt{e^x-5}}dx=\int \frac{d(e^x)}{\sqrt{e^x-5}}\)

Đặt \(\sqrt{e^x-5}=t\Rightarrow e^x=t^2+5\)

Khi đó: \(C=\int \frac{d(t^2+5)}{t}=\int \frac{2tdt}{t}=\int 2dt=2t+c=2\sqrt{e^x-5}+c\)