K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Từ sau khi đăng bài phiền bạn học cách gõ công thức toán, nhìn ntn rất rối mắt

1)

\(A=-\int\cot^2 xdx=-\int\frac{\cos ^2x}{\sin^2x}dx=-\int \frac{1-\sin^2x}{\sin^2x}dx=-\int\frac{dx}{\sin^2x}+\int dx\)

\(\Rightarrow A=\cot x+x+c\)

2)

\(B=\int xe^{-x}dx\). Đặt \(\left\{\begin{matrix} u=x\\ dv=e^{-x}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=dx\\ v=\int e^{-x}dx=-e^{-x}\end{matrix}\right.\)

\(\Rightarrow B=-xe^{-x}+\int e^{-x}dx=-xe^{-x}-e^{-x}+c\)

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Bài 3: Ta có

\(F(x)=\int f(x)dx=\int (2x+\sin x+2\cos x)dx=2\int xdx+\int \sin xdx+2\int \cos xdx\)

\(\Leftrightarrow F(x)=x^2-\cos x+2\sin x+c\)

\(F(0)=1\Rightarrow 0-1+0+c=1\Leftrightarrow c=2\)

\(\Rightarrow F(x)=x^2-\cos x+2\sin x+2\), tức đáp án A là đáp án đúng.

P/s: Mấy bải này rất dễ. Mình nghĩ cơ bản là bạn nên học thuộc bảng đạo hàm và tính chất nguyên hàm là sẽ ổn thôi.

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Lời giải:

Bài 1:

Ta nhớ công thức \(\sin^2x=\frac{1-\cos 2x}{2}\). Áp dụng vào bài toán:

\(F(x)=8\int \sin^2\left(x+\frac{\pi}{12}\right)dx=4\int \left [1-\cos \left(2x+\frac{\pi}{6}\right)\right]dx\)

\(\Leftrightarrow F(x)=4\int dx-4\int \cos \left(2x+\frac{\pi}{6}\right)dx=4x-2\int \cos (2x+\frac{\pi}{6})d(2x+\frac{\pi}{6})\)

\(\Leftrightarrow F(x)=4x-2\sin (2x+\frac{\pi}{6})+c\)

Giải thích 1 chút: \(d(2x+\frac{\pi}{6})=(2x+\frac{\pi}{6})'dx=2dx\)

\(F(0)=8\Rightarrow -1+c=8\Rightarrow c=9\)

\(\Rightarrow F(x)=4x-2\sin (2x+\frac{\pi}{6})+9\)

Câu 2:

Áp dụng nguyên hàm từng phần như bài bạn đã đăng:

\(\Rightarrow F(x)=-xe^{-x}-e^{-x}+c\)

\(F(0)=1\Rightarrow -1+c=1\Rightarrow c=2\)

\(\Rightarrow F(x)=-e^{-x}(x+1)+2\), tức B là đáp án đúng

30 tháng 5 2018

Đáp án A.

16 tháng 12 2017

Đáp án A

9 tháng 3 2019

Đáp án D

25 tháng 12 2019

Đáp án A

7 tháng 3 2019

Chọn A

8 tháng 2 2017

Đáp án D.