Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 1x2+2x3+3x4+...+nx(n+1)
=> 3A = 1.2.(3 - 0) + 2.3.(4 - 1) + ..... + n.(n + 1).[(n + 2).(n - 1)]
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + n.(n + 1).(n + 2)
=> 3A = n.(n + 1).(n + 2)
=> A = n.(n + 1).(n + 2) / 3
Cách làm mk làm giống Edokawa Conan nhé kw ;\(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)
cau len mang di , bai nay mk chua hoc , sory nha
chuc ban hoc tot ^-^
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{n\left(n+1\right)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(=1-\frac{1}{n+1}\)
\(=\frac{n+1}{n+1}-\frac{1}{n+1}\)
\(=\frac{n}{n+1}\)
vì 1/1*2=1-1/2
1/2*3=1/2-1/3
.....................
1/2014*2015=1/2014-1/2015
=1-1/2+1/2-1/3+1/3-....+1/2014-1/2015
=1-1/2015
=2014/2115
\(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+....+\frac{1}{2014x2015}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
=\(1-\frac{1}{100}\)
=\(\frac{99}{100}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=\frac{1}{1}-\frac{1}{6}\)
\(=\frac{5}{6}\)
\(\frac{1}{1.2}\)\(+\)\(\frac{1}{2.3}\)\(+\)\(\frac{1}{3.4}\)\(+\)\(\frac{1}{4.5}\)\(+\)\(\frac{1}{5.6}\)
\(=\)\(\frac{1}{1}\)\(-\)\(\frac{1}{2}\)\(+\)\(\frac{1}{2}\)\(-\)\(\frac{1}{3}\)\(+\)\(\frac{1}{3}\)\(-\)\(\frac{1}{4}\)\(+\)\(\frac{1}{4}\)\(-\)\(\frac{1}{5}\)\(+\)\(\frac{1}{5}\)\(-\)\(\frac{1}{6}\)
\(=\)\(\frac{1}{1}\)\(-\)\(\frac{1}{6}\)
\(=\)\(\frac{5}{6}\)
Hok tốt
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2009}-\dfrac{1}{2010}\\ =1-\dfrac{1}{2010}=\dfrac{2009}{2010}\)
\(C=-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{4}-....-\frac{1}{42}+\frac{1}{43}-\frac{1}{43}+\frac{1}{44}\)
\(C=-1+\frac{1}{44}\)
\(C=-\frac{43}{44}\)
Đặt A = 1 x 2 + 2 x 3 + 3 x 4 + ... + n x ( n - 1)
=> 3A = 1 x 2 x (3 - 0) + 2 x 3 x (4 - 1) + 3 x 4 x (5 - 2) + ... + n x (n - 1) x [(n + 2) x (n + 1)]
=> 3A = 1 x 2 x 3 - 1 x 2 x 3 + 2 x 3 x 4 - 2 x 3 x 4 + ... + n x (n + 1) x (n + 2)
=> 3A = n x (n + 1) x (n + 2)
=> A = n x (n + 1) x (n + 2) / 3
3S=1.2.3+3.4.5+...+n.(n-1).3
1.2.(3-0).......................................................
k mk đi mk giải tiếp cho nha