K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017

trước hết ta chứng minh BĐT \(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}+\sqrt{c^2+z^2}\ge\sqrt{\left(a+b+c\right)^2+\left(x+y+z\right)^2}\)bình phương vế trái ta được:

\(a^2+b^2+c^2+x^2+y^2+z^2+2\left(\sqrt{a^2+x^2}.\sqrt{b^2+y^2}+\sqrt{b^2+y^2}.\sqrt{c^2+z^2}+\sqrt{a^2+x^2}.\sqrt{c^2+z^2}\right)\)

áp dụng BĐt bunyakovsky:

\(\sqrt{\left(a^2+x^2\right)\left(b^2+y^2\right)}\ge\sqrt{\left(ab+xy\right)^2}=ab+xy\)

tương tự với các bộ còn lại ta thu được :

\(VT^2\ge a^2+b^2+c^2+x^2+y^2+z^2+2\left(ab+bc+ca+xy+yz+xz\right)=VF^2\)

do đó BĐT trên đúng

Áp dụng vào bài toán:

\(\sqrt{4+x^4}+\sqrt{4+y^4}+\sqrt{4+z^4}\ge\sqrt{\left(2+2+2\right)^2+\left(x^2+y^2+z^2\right)^2}\)(*)

giờ tìm MIn của\(x^2+y^2+z^2\)

ta có:\(x^2+y^2+z^2\ge xy+yz+xz\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\)(1)

Áp dụng BĐT cauchy:\(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)

\(\Rightarrow x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)(2)

cộng theo vế (1) và (2):

\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+xz\right)=12\)

\(\Leftrightarrow x^2+y^2+z^2\ge3\)

kết hợp với (*),ta có:

\(VT\ge\sqrt{36+9}=3\sqrt{5}\)

dấu = xảy ra khi x=y=z=1

19 tháng 4 2017

thanks...