Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1002+2002+3002+...+10002
A=12.1002+22.1002+32.1002+...+102.1002
A=1002.(12+22+32+...+102)
A=10000.385
A=3850000
A= 1 +\(\frac{1}{3}\)+\(\frac{1}{6}\)+ .....+ \(\frac{1}{171}\)+\(\frac{1}{190}\)
A= 1 +2.(\(\frac{1}{6}\)+\(\frac{1}{12}\)+....+\(\frac{1}{342}\)+\(\frac{1}{380}\))
A=1+ 2.(\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+....+\(\frac{1}{18.19}\)+\(\frac{1}{19.20}\))
A=1+2.(\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+......+\(\frac{1}{18}\)-\(\frac{1}{19}\)+\(\frac{1}{19}\)-\(\frac{1}{20}\))
A=1 +2.(\(\frac{1}{2}\)-\(\frac{1}{20}\))
A=1+2.\(\frac{9}{20}\)=1+\(\frac{9}{10}\)=\(\frac{19}{10}\)
\(A=1+\frac{2}{6}+\frac{2}{12}+...+\frac{2}{380}\)
\(=1+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{19.20}\)
\(=1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\right)\)
\(=1+2\left(\frac{1}{2}-\frac{1}{20}\right)\)
\(=1+2\times\frac{9}{20}\)
\(=1+\frac{9}{10}\)
\(=\frac{19}{10}\)
b)\(2S=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{20}}\right)\)
\(2S=1+\frac{1}{2}+...+\frac{1}{2^{19}}\)
\(2S-S=\left(1+\frac{1}{2}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{20}}\right)\)
\(S=1-\frac{1}{2^{20}}\)
c)đặt A=1+2+2^2+2^3+...+2^2006+2^2007.
2A=2(1+2+2^2+2^3+...+2^2006+2^2007)
2A=2+2^2+2^3+...+2^2008
2A-A=(2+2^2+2^3+...+2^2008)-(1+2+2^2+2^3+...+2^2006+2^2007)
A=2^2008-1
Giải:
a) S=52/1.6+52/6.11+52/11.16+52/16.21+52/21.26
S=5.(5.1/6+5/6.11+5/11.16+5/16.21+5/21.26)
S=5.(1/1-1/6+1/6-1/11+1/11-1/16+1/16-1/21+1/21-1/26)
S=5.(1/1-1/26)
S=5.25/26
S=125/26
b) (1-1/2).(1-1/3).(1-1/4).(1-1/5).....(1-1/19).(1-1/20)
=1/2.2/3.3/4.4/5.....18/19.19/20
=1.2.3.4.....18.19/2.3.4.5.....19.20
=1/20
Chúc bạn học tốt!
\(S=a+a^3+...+a^{2n+1}\)
\(S.a^2=a^3+a^5+...+a^{2n+1}+a^{2n+3}\)
\(\Rightarrow S\left(a^2-1\right)=a^{2n+3}-a\)
\(\Rightarrow S=\dfrac{a^{2n+3}-a}{a^2-1}\)
\(S_1=1+a^2+...+a^{2n}\)
\(S_1.a^2=a^2+a^4+...+a^{2n}+a^{2n+2}\)
\(\Rightarrow S_1\left(a^2-1\right)=a^{2n+2}-1\)
\(\Rightarrow S_1=\dfrac{a^{2n+2}-1}{a^2-1}\)
a) \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}\)
=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}\)
=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)
=\(1-\dfrac{1}{6}\)=\(\dfrac{5}{6}\)
b) \(\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)
=\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}\)
=\(\dfrac{1.2}{3.5.2}+\dfrac{1.2}{5.7.2}+\dfrac{1.2}{7.9.2}+\dfrac{1.2}{9.11.2}+\dfrac{1.2}{11.13.2}\)
=\(\dfrac{1}{2}\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\right)\).
=\(\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\right)\)
=\(\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{13}\right)\)=\(\dfrac{1}{2}.\dfrac{10}{39}\)=\(\dfrac{5}{39}\).
c) \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
=\(1-\dfrac{1}{8}=\dfrac{7}{8}\).
d) \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}\)
=\(\dfrac{2^4}{2^5}+\dfrac{2^3}{2^5}+\dfrac{2^2}{2^5}+\dfrac{2}{2^5}+\dfrac{1}{2^5}\)
=\(\dfrac{2^4+2^3+2^2+2+1}{2^5}\)=\(\dfrac{2^5-1}{2^5}=\dfrac{31}{32}\).
e) \(\dfrac{1}{7}+\dfrac{1}{7^2}+\dfrac{1}{7^3}+...+\dfrac{1}{7^{100}}=\dfrac{7^{99}+7^{98}+7^{97}+...+7+1}{7^{100}}=\dfrac{\dfrac{7^{100}-1}{6}}{7^{100}}=\dfrac{7^{100}-1}{6.7^{100}}\)
=1*200+2*(200-1)+3*(200-2)+...+199(200-198)+200(200-199)
=(1+2+3+...+200)-(1*2+2*3+...+199*200)
=200*201/2-199*200*201/3
=1353400
a: =(-1)+(-1)+...+(-1)=-1011
b: =(-5)+(-5)+...+(-5)=-175