K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4
456
CTVHS
1 tháng 5

\(A=\dfrac{2024}{1.2}+\dfrac{2024}{2.3}+\dfrac{2024}{3.4}+...+\dfrac{2024}{2023.2024}\)

\(A=2024.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2023.2024}\right)\)

\(A=2024.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2023}-\dfrac{1}{2024}\right)\)

\(A=2024.\left(1-\dfrac{1}{2024}\right)\)

\(A=2024.\dfrac{2023}{2024}\)

\(A=\dfrac{2024}{1}.\dfrac{2023}{2024}\)

\(A=1.2023\)

\(A=2023\)

\(\Rightarrow\) Vậy \(A=2023\)

13 tháng 2 2023

\(A=\dfrac{2024^{2023}+1}{2024^{2024}+1}\)

\(2024A=\dfrac{2024^{2024}+2024}{2024^{2024}+1}=\dfrac{\left(2024^{2024}+1\right)+2023}{2024^{2024}+1}=\dfrac{2024^{2024}+1}{2024^{2024}+1}+\dfrac{2023}{2024^{2024}+1}=1+\dfrac{2023}{2024^{2024}+1}\)

\(B=\dfrac{2024^{2022}+1}{2024^{2023}+1}\)

\(2024B=\dfrac{2024^{2023}+2024}{2024^{2023}+1}=\dfrac{\left(2024^{2023}+1\right)+2023}{2024^{2023}+1}=\dfrac{2024^{2023}+1}{2024^{2023}+1}+\dfrac{2023}{2024^{2023}+1}=1+\dfrac{2023}{2024^{2023}+1}\)

Vì \(2024>2023=>2024^{2024}>2024^{2023}\)

\(=>2024^{2024}+1>2024^{2023}+1\)

\(=>\dfrac{2023}{2024^{2023}+1}>\dfrac{2023}{2024^{2024}+1}\)

\(=>A< B\)

 

\(#PaooNqoccc\)

13 tháng 2 2023

dễ

1 tháng 8 2023

a) \(2023^{2024}\) và \(2023^{2023}\)

vì 2024 > 2023 nên 20232024 > 20232023

Vậy 20232024 > 20232023

b) \(17^{2024}\) và \(18^{2024}\)

vì 17 < 18 nên 172024 < 18 2024

Vậy 172024 < 182024

1 tháng 8 2023

a)>

b)<

29 tháng 3 2023

x-(1/1.2 + 1/2.3 + 1/3.4 + ...+ 1/2022.2023)= -2024/2023

x-(1-1/2 + 1/2-1/3 + 1/3-1/4 + ... + 1/2022-1/2023)=-2024/2023

x-(1-1/2023)=-2024/2023

x-2022/2023=-2024/2023

x = -2024/2023+2022/2023

x = -2/2023

Vậy x = -2/2023

29 tháng 3 2023

:(((

AH
Akai Haruma
Giáo viên
15 tháng 7 2023

Lời giải:
Ta có:
$(x+y+z)(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=2023.\frac{2024}{2023}$

$\Leftrightarrow 1+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+1+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}+1=2024$

$\Leftrightarrow 3+\frac{x+z}{y}+\frac{y+z}{x}+\frac{x+y}{z}=2024$

$\Leftrightarrow 3+B=2024$

$\Leftrightarrow B=2021$

AH
Akai Haruma
Giáo viên
15 tháng 7 2023

26 tháng 8 2016

A=2x^2+9y^2-6xy-6x-12y+2024 
A = (x^2 -6xy +9y^2) + 4(x -3y) + x^2 - 10x + 2024
A = (x -3y)^2 +4(x -3y) + 4 + x^2 -10x +25 + 1995
A = (x -3y +2)^2 + (x -5)^2 + 1995 \geq 1995
Min A = 1995 
 x - 5 = 0 => x = 5
Và x - 3y + 2 = 0 hay 5 -3y +2 = 0 => -3y = -7 => y = 7/3 


\(K\)\(nha!~!\)

19 tháng 8 2017

để x là lớn nhất thì (x-5) phải bằng 1 vì 540 : 1 =540

=> x-5=1

=>x = 6

ta có: M = 2024 + 540 :(6-5)

=2024 + 540 : 1

=2024 + 540=2564

Vậy M = 2564

\(A=x^2-2x+2024\)

\(A=x^2-2x+1+2023=\left(x-1\right)^2+2023\ge2023\)

Min A = 2023 khi x = 1 

=x^2-2x+1+2023

=(x-1)^2+2023>=2023

Dấu = xảy ra khi x=1