Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/ Ta có:
\(A=\dfrac{1-2x}{x+3}\)
\(A=\dfrac{-2x+1}{x+3}\)
\(A=\dfrac{-2x-6+7}{x+3}\)
\(A=\dfrac{-2\left(x+3\right)+7}{x+3}\)
\(A=-2+\dfrac{7}{x+3}\)
A nguyên khi \(\dfrac{7}{x+3}\) nguyên
⇒ 7 ⋮ \(x+3\)
\(\Rightarrow x+3\inƯ\left(7\right)\)
\(\Rightarrow x+3\in\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{-2;-4;4;-10\right\}\)
Bài 1.
Giải
a) Ta có: \(A=\dfrac{3n+9}{n-4}=\dfrac{3n-12+21}{n-4}=\dfrac{3\left(n-4\right)+21}{n-4}=3+\dfrac{21}{n-4}\)
Để \(A\in Z\) thì \(\dfrac{21}{n-4}\in Z\)
\(\Rightarrow21⋮\left(n-4\right)\)
\(\Rightarrow\left(n-4\right)\inƯ\left(21\right)\)
\(\Rightarrow\left(n-4\right)\in\left\{\pm1;\pm3;\pm7;\pm21\right\}\)
Ta có bẳng sau:
\(n-4\) | \(-21\) | \(-7\) | \(-3\) | \(-1\) | \(1\) | \(3\) | \(7\) | \(21\) |
\(n\) | \(-17\) | \(-3\) | \(1\) | \(3\) | \(5\) | \(7\) | \(11\) | \(25\) |
Vậy \(n\in\left\{-17;-3;1;3;5;7;11;25\right\}\) thì \(A\in Z.\)
b) Ta có: \(B=\dfrac{6n+5}{2n-1}=\dfrac{6n-3+8}{2n-1}=\dfrac{3\left(2n-1\right)+8}{2n-1}=3+\dfrac{8}{2n-1}\)
Để \(B\in Z\) thì \(\dfrac{8}{2n-1}\in Z\)
\(\Rightarrow8⋮\left(2n-1\right)\)
\(\Rightarrow\left(2n-1\right)\inƯ\left(8\right)\)
\(\Rightarrow\left(2n-1\right)\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Ta có bảng sau:
\(2n-1\) | \(-8\) | \(-4\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(8\) |
\(2n\) | \(-7\) | \(-3\) | \(-1\) | \(0\) | \(2\) | \(3\) | \(5\) | \(9\) |
\(n\) | \(\dfrac{-7}{2}\) | \(\dfrac{-3}{2}\) | \(\dfrac{-1}{2}\) | \(0\) | \(1\) | \(\dfrac{3}{2}\) | \(\dfrac{5}{2}\) | \(\dfrac{9}{2}\) |
Vậy \(n\in\left\{\dfrac{-7}{2};\dfrac{-3}{2};\dfrac{-1}{2};0;1;\dfrac{3}{2};\dfrac{5}{2};\dfrac{9}{2}\right\}\)
Bạn Nguyen Thi Huyen giải bài 1 rồi nên mình giải tiếp các bài kia nhé!
Bài 2:
\(\dfrac{x-18}{2000}+\dfrac{x-17}{2001}=\dfrac{x-16}{2002}+\dfrac{x-15}{2003}\)
\(\Leftrightarrow\left(\dfrac{x-18}{2000}-1\right)+\left(\dfrac{x-17}{2001}-1\right)=\left(\dfrac{x-16}{2002}-1\right)+\left(\dfrac{x-15}{2003}-1\right)\)
\(\Leftrightarrow\dfrac{x-2018}{2000}+\dfrac{x-2018}{2001}=\dfrac{x-2018}{2002}+\dfrac{x-2018}{2003}\)
\(\Leftrightarrow\dfrac{x-2018}{2000}+\dfrac{x-2018}{2001}-\dfrac{x-2018}{2002}-\dfrac{x-2018}{2003}=0\)
\(\Leftrightarrow\left(x-2018\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
Dễ thấy \(\dfrac{1}{2000}>\dfrac{1}{2001}>\dfrac{1}{2002}>\dfrac{1}{2003}\) nên:
\(\dfrac{1}{2000}+\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}\ne0\). Do đó:
\(x-2018=0\Leftrightarrow x=2018\)
Bài 3:
a) \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\Leftrightarrow\dfrac{20}{4x}+\dfrac{xy}{4x}=\dfrac{20+xy}{4x+4x}=\dfrac{20+xy}{8x}=\dfrac{1}{8}\)
Hoán vị ngoại tỉ ta có: \(\dfrac{20+xy}{8x}=\dfrac{1}{8}\Leftrightarrow\dfrac{8}{8x}=\dfrac{1}{x}=\dfrac{1}{8}\Leftrightarrow x=8\)
Thế x = 8 vào : \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\) .Ta có: \(\dfrac{5}{8}+\dfrac{y}{4}=\dfrac{1}{8}\Leftrightarrow\dfrac{y}{4}=\dfrac{1}{8}-\dfrac{5}{8}=\dfrac{-2}{4}\). Ta có: \(\dfrac{y}{4}=\dfrac{-2}{4}\Leftrightarrow y=-2\)
Vậy: \(\left[{}\begin{matrix}x=8\\y=-2\end{matrix}\right.\)
b) \(\dfrac{1}{x}-\dfrac{2}{y}=\dfrac{3}{1}\Rightarrow\dfrac{y}{x}-2=\dfrac{3}{1}\) (hoán vị ngoại tỉ)
\(\Leftrightarrow\dfrac{y}{x}=\dfrac{5}{1}\). Suy ra nghiệm x,y có dạng \(\left[{}\begin{matrix}x=1k\\y=5k\end{matrix}\right.\left(k\in Z\right)\). Bằng các phép thử lại ta dễ dàng suy ra x,y vô nghiệm.
\(b,C=\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\\ =\dfrac{1}{3.6}+\dfrac{1}{6.9}+\dfrac{1}{9.12}+...+\dfrac{1}{30.33}\\ =\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{12}+...+\dfrac{1}{30}-\dfrac{1}{33}\\ =\dfrac{1}{3}-\dfrac{1}{33}\\ =\dfrac{11}{33}-\dfrac{1}{33}=\dfrac{10}{33}\)
a.F=\(\dfrac{4}{2.4}\)+\(\dfrac{4}{4.6}\)+\(\dfrac{4}{6.8}\)+...+\(\dfrac{4}{2008.2010}\)
F=\(\dfrac{2.2}{2.4}\)+\(\dfrac{2.2}{4.6}\)+\(\dfrac{2.2}{6.8}\)+...+\(\dfrac{2.2}{2008.2010}\)
F=2.(\(\dfrac{2}{2.4}\)+\(\dfrac{2}{4.6}\)+\(\dfrac{2}{6.8}\)+...+\(\dfrac{2}{2008.2010}\))
F=2.(\(\dfrac{1}{2}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{8}\)+...+\(\dfrac{1}{2008}\)-\(\dfrac{1}{2010}\))
F=2.(\(\dfrac{1}{2}\)-\(\dfrac{1}{2010}\))
F=\(\dfrac{1004}{1005}\)
Ta có : 2x+1 /5 = 3y-2/7 = 2x+3y -1 /6x
=> 2x+1+3y-2 / 5+7 = 2x+3y-1 /6x
=> 2x+3y-1 / 12 = 2x+3y-1 / 6x
=> 12 = 6x => x =2
a, 1+2y / 18 = 1+4y / 24 = 1+6y / 6x
Ta có : 1+2y / 18 = 1+6y / 6x = 1+2y + 1+6y / 18 + 6y
= 2+ 8y / 18+6y = 2 (1+4y) / 2( 9 +3y) = 1+4y/9+3y
Ta lại có : 1 + 4y/24 = 1+4y / 9+3y
=> 24=9+3y => 15=3y => y=5
Vậy y=5
Nhớ like
b, 1+3y/12 = 1+5y/5x = 1+7y/4x
Ta có : 1+3y/12 = 1+7y/4x = 1+3y+1+7y / 12 +4x
= 2 + 10y / 12 +4x = 2 (1+5y) / 2 (6+2x) = 1+5y / 6+2x
Ta lại có: 1+5y / 5x = 1+5y / 6+2x
=> 5x = 6+2x => 3x = 6 => x=2
Vậy x =2
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1=\dfrac{x+2}{2002}+1+\dfrac{x+1}{2003}+1\)
\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)
\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Rightarrow x+2004=0\Rightarrow x=-2004\)
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Rightarrow\dfrac{x+4}{2000}+\dfrac{x+3}{2001}-\dfrac{x+2}{2002}-\dfrac{x+1}{2003}=0\)
\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1-\dfrac{x+2}{2002}-1-\dfrac{x+1}{2003}-1=0\)
\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Rightarrow x+2004\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Rightarrow x+2004=0\)
\(\Rightarrow x=-2004\)
Vậy \(x=-2004\)
\(a,A=\dfrac{\dfrac{3}{4}-\dfrac{3}{11}+\dfrac{3}{13}}{\dfrac{5}{7}-\dfrac{5}{11}+\dfrac{5}{13}}+\dfrac{\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}}{\dfrac{5}{4}-\dfrac{5}{6}+\dfrac{5}{8}}\\ A=\dfrac{\dfrac{405}{572}}{\dfrac{645}{1001}}+\dfrac{\dfrac{5}{12}}{\dfrac{25}{24}}\\ A=\dfrac{189}{172}+\dfrac{2}{5}\\ A=\dfrac{1289}{860}\)
Bài 1:
Ta có:
\(A=\dfrac{1}{3}-\dfrac{1}{18}-\dfrac{1}{54}-\dfrac{1}{108}-\dfrac{1}{270}-\dfrac{1}{378}\)
\(=\dfrac{1}{3}-\left(\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+\dfrac{1}{270}+\dfrac{1}{378}\right)\)
\(=\dfrac{1}{3}-\left(\dfrac{1}{3.6}+\dfrac{1}{6.9}+\dfrac{1}{9.12}+...+\dfrac{1}{18.21}\right)\)
\(=\dfrac{1}{3}-\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{18}-\dfrac{1}{21}\right)\)
\(=\dfrac{1}{3}-\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{21}\right)=\dfrac{1}{3}-\dfrac{1}{3}.\dfrac{6}{21}\)
\(=\dfrac{1}{3}-\dfrac{2}{21}=\dfrac{5}{21}\)
Vậy \(A=\dfrac{5}{21}\)
Bài 2:
Ta có: \(51x+26y=2000\)
Mà \(\left\{{}\begin{matrix}26y⋮2\\2000⋮2\end{matrix}\right.\) \(\Leftrightarrow51x⋮2\)
\(\left(51;2\right)=1\Rightarrow x⋮2\)
Mặt khác \(x\) là số nguyên tố nên \(x=2\)
Khi đó:
\(51.2+26y=2000\Leftrightarrow y=73\) (thỏa mãn)
Vậy các số nguyên tố \(\left(x,y\right)=\left(2;73\right)\)