K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2018

Bài 2:

Ta có : \(2010=2011-1=x-1\)

Thay \(2010=x-1\) vào biểu thức A ,có :

\(x^{2011}-\left(x-1\right)x^{2010}-\left(x-1\right)x^{2009}-...-\left(x-1\right)x+1\)

\(=x^{2011}-x^{2011}+x^{2010}-x^{2010}+x^{2009}-...-x^2+x+1\)

\(=x+1\)

\(=2011+1=2012\)

Vậy giá trị biểu thức A là 2012

Bài 3:

\(a+b+c=0\)

\(\Rightarrow a+b=-c\)

\(\Rightarrow\left(a+b\right)^2=\left(-c\right)^2\)

\(\Rightarrow a^2+2ab+b^2=c^2\)

\(\Rightarrow a^2+b^2-c^2=-2ab\left(1\right)\)

Tương tự :

\(a+b+c=0\)

\(\Rightarrow a+c=-b\)

\(\Rightarrow\left(a+c\right)^2=\left(-b\right)^2\)

\(\Rightarrow a^2+2ac+c^2=b^2\)

\(\Rightarrow a^2+c^2-b^2=-2ac\left(2\right)\)

\(a+b+c=0\)

\(\Rightarrow b+c=-a\)

\(\Rightarrow\left(b+c\right)^2=\left(-a\right)^2\)

\(\Rightarrow b^2+c^2-a^2=-2bc\left(3\right)\)

Từ (1)(2)(3)

\(\Rightarrow A=\dfrac{-ab}{2ab}+\dfrac{-bc}{2bc}+\dfrac{-ac}{2ac}\)

\(=\dfrac{-abc-abc-abc}{2abc}=\dfrac{-3abc}{2abc}=-\dfrac{3}{2}\)

Cảm ơn bạn nhahihi

NV
3 tháng 3 2021

\(N=\dfrac{\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3}{\left(ab\right)\left(bc\right)\left(ca\right)}\)

Đặt \(\left(ab;bc;ca\right)=\left(x;y;z\right)\Rightarrow x+y+z=0\Rightarrow N=\dfrac{x^3+y^3+z^3}{xyz}\)

\(N=\dfrac{x^3+y^3+z^3-3xyz+3xyz}{xyz}=\dfrac{\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]+3xyz}{xyz}=\dfrac{3xyz}{xyz}=3\)

 

a: |x-1|=3

=>x-1=3 hoặc x-1=-3

=>x=-2(nhận) hoặc x=4(loại)

Khi x=-2 thì \(A=\dfrac{4+4}{-2-4}=\dfrac{8}{-6}=\dfrac{-4}{3}\)

b: ĐKXĐ: x<>4; x<>-4

\(B=\dfrac{-\left(x+4\right)}{x-4}+\dfrac{x-4}{x+4}-\dfrac{4x^2}{\left(x-4\right)\left(x+4\right)}\)

\(=\dfrac{-x^2-8x-16+x^2-8x+16-4x^2}{\left(x-4\right)\left(x+4\right)}=\dfrac{-4x^2-16x}{\left(x-4\right)\left(x+4\right)}\)

=-4x/x-4

c: A+B

=-4x/x-4+x^2+4/x-4

=(x-2)^2/(x-4)
A+B>0

=>x-4>0

=>x>4

24 tháng 5 2022

a)Vì |4x - 2| = 6 <=> 4x - 2 ϵ {6,-6} <=> x ϵ {2,-1}

Thay x = 2, ta có B không tồn tại

Thay x = -1, ta có B = \(\dfrac{1}{3}\)

b)ĐKXĐ:x ≠ 2,-2

Ta có \(A=\dfrac{5}{x+2}+\dfrac{3}{2-x}-\dfrac{15-x}{4-x^2}=\dfrac{10-5x+3x+6}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{16-2x}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{\left(x+2\right)\left(x-2\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{x^2-4}+\dfrac{15-x}{x^2-4}=\dfrac{x-1}{x^2-4}\)c)Từ câu b, ta có \(A=\dfrac{x-1}{x^2-4}\)\(\Rightarrow\dfrac{2A}{B}=\dfrac{\dfrac{\dfrac{2x-2}{x^2-4}}{2x+1}}{x^2-4}=\dfrac{2x-2}{2x+1}< 1\) với mọi x

Do đó không tồn tại x thỏa mãn đề bài

19 tháng 12 2020

Bài này dễ thôi:vv

Theo đề ta có: \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\Leftrightarrow\dfrac{xbc+yac+zab}{abc}=0\Leftrightarrow xbc+yac+zab=0\)

Lại có:\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\Rightarrow\left(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\right)^2=4\)

=>\(\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2\left(\dfrac{ab}{xy}+\dfrac{bc}{yz}+\dfrac{ca}{xz}\right)=4\)

=>\(\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2\left(\dfrac{abz+bcx+cay}{xyz}\right)=4\)

=>\(\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2.0=4\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}=2\)

Vậy...

19 tháng 12 2020

Bn giỏi ghê Lý Mặc Dương , khâm phục bạn thật!!

 

2 tháng 3 2017

vi a/x + b/y + c/z =0 suy ra ayz/xyz + bxz/xyz + cxy/xyz =0 suy ra ayz+bxz+cxy /xyz =0 suy ra ayz + bxz + cxy =0

vi x/a + y/b =z/c =0 suy ra (x/a + y/b + z/c )^2 =0 suy ra x^2/a^2 +y^2/b^2 + z^2/c^2 + 2(xy/ab + xz/ac + yz/bc) =0

suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2(cxy+ bxz +ayz /abc) =0

suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 =0

suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 +2011 = 2011

5 tháng 7 2017

Bài 2:

Bài 1:

\(a^2+b^2+c^2=14\Rightarrow\left(a+b+c\right)^2-2ab-2bc-2ac=14\)\(\Leftrightarrow-2\left(ab+bc+ac\right)=14\Rightarrow ab+bc+ac=-7\)\(\Rightarrow\left(ab+bc+ac\right)^2=49\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=49\)

\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=49\)

Ta có:

\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2a^2b^2-2b^2c^2-2a^2c^2\)\(=14^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=196-2.49=98\)