Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tổng trên là A.Ta có
\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
\(2A=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}+\frac{2}{195}\)
\(2A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)
\(2A=\frac{1}{3}-\frac{1}{15}\)
\(2A=\frac{5}{15}-\frac{1}{15}\)
\(2A=\frac{4}{15}\)
\(A=\frac{4}{15}:2\)
\(A=\frac{2}{15}\)
l) (x + 9) . (x2 – 25) = 0
<=> (x + 9) . (x – 5) . (x + 5) = 0
<=> \(\left[{}\begin{matrix}\text{x + 9 = 0}\\x-5=0\\x+5=0\end{matrix}\right.\left[{}\begin{matrix}x=-9\\x=5\\x=-5\end{matrix}\right.\)
Vậy S = \(\left\{-9,5,-5\right\}\)
e) |x - 4 |< 7
<=> \(\left[{}\begin{matrix}x-4=7\\x-4=-7\end{matrix}\right.< =>\left[{}\begin{matrix}x=11\\x=-3\end{matrix}\right.\)
Vậy S = \(\left\{11;-3\right\}\)
I,(x+9).(x^2-25)=0
tương đương:x+9=0
x^2-25=0
tương đương : x=-9
x=5
e,\(\left|x-4\right|\)=7
tương đương x-4=4
x-4=-4
tương đương :x=0
x=-8
a: =>4/x=y/21=4/7
=>x=7; y=21*4/7=12
b: x/7=9/y
=>xy=63
mà x>y
nên \(\left(x,y\right)\in\left\{\left(63;1\right);\left(21;3\right);\left(9;7\right);\left(-7;-9\right);\left(-3;-21\right);\left(-1;-63\right)\right\}\)
c: x/15=3/y
=>xy=45
mà x<y<0
nên \(\left(x,y\right)\in\left\{\left(-45;-1\right);\left(-15;-3\right);\left(-9;-5\right)\right\}\)
d: x/y=21/28=3/4
=>x/3=y/4=k
=>x=3k; y=4k(k\(\in Z\))
Bài 2:
a: \(\dfrac{4\cdot7}{9\cdot32}=\dfrac{4}{32}\cdot\dfrac{7}{9}=\dfrac{1}{8}\cdot\dfrac{7}{9}=\dfrac{7}{72}\)
b: \(\dfrac{3\cdot21}{14\cdot15}=\dfrac{63}{210}=\dfrac{3}{10}\)
c: \(\dfrac{9\cdot6-9\cdot3}{18}=\dfrac{9\cdot3}{18}=\dfrac{3}{2}\)
d: \(\dfrac{17\cdot15-17}{3-20}=\dfrac{17\cdot14}{-17}=-14\)
e: \(=\dfrac{26\cdot5}{26\cdot35}=\dfrac{5}{35}=\dfrac{1}{7}\)
f: \(=\dfrac{49\left(1+7\right)}{49}=8\)