K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2020

a) Ta có : 2005.2007 = (2006 - 1)(2006 + 1) = 20062 - 12 = 20062 - 1 ( cái khúc này sửa : 2005.2001 thành 2005.2007)

Mà B = 20062

=> 20062 - 1 < 20062 

=> A < B

b) Ta có : B = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

                B =  (2 - 1)(2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

                B = (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

                B = (24 - 1)(24 + 1)(28 + 1)(216 + 1)

                B = (28 - 1)(28 + 1)(216 + 1) = (216 - 1)(216 + 1) = 232 - 1

Mà C = 232

=> B < C 

c) Tương tự như câu b

16 tháng 8 2021

2

Ta có:

VP=(a+b)3−3ab(a+b)VP=(a+b)3-3ab(a+b)

     =a3+b3+3ab(a+b)−3ab(a+b)=a3+b3+3ab(a+b)-3ab(a+b)

     =a3+b3=VT(dpcm)

16 tháng 8 2021

1, \(VT=a^2+b^2=a^2+b^2+2ab-2ab=\left(a+b\right)^2-2ab=VP\left(đpcm\right)\)

27 tháng 11 2023

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

=>\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)

=>\(2\left(ab+bc+ac\right)=0\)

=>ab+bc+ac=0

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)

=>\(\dfrac{\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3}{\left(abc\right)^3}=\dfrac{3}{abc}\)

=>\(\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3=3\left(abc\right)^2\)

\(\Leftrightarrow\left(ab+bc\right)^3-3\cdot ab\cdot bc\cdot\left(ab+bc\right)+\left(ac\right)^3=3\left(abc\right)^2\)

=>\(\left(-ac\right)^3-3\cdot ab\cdot bc\cdot\left(-ac\right)+\left(ac\right)^3-3\left(abc\right)^2=0\)

=>\(-a^3c^3+a^3c^3+3a^2b^2c^2-3a^2b^2c^2=0\)

=>0=0(đúng)

12 tháng 11 2017

a) Rút gọn M = 279. Với m = 2017 giá trị của M = 279.

b) N = 8 a 3   -   27 b 3   =   ( 2 a ) 3   -   ( 3 b ) 3 = ( 2 a   -   3 b ) 3  + 3.2a.3b.(2a - 3b)

Thay a.b = 12;2a - 3b = 5 ta thu được N - 1205.

c) Cách 1: Từ a + b = 1 Þ a = 1 - b thế vào K.

Thực hiện rút gọn K, ta có kết quả K = 1.

Cách 2: Tìm cách đưa biêu thức về dạng a + b.

a 3   +   b 3   =   ( a   +   b ) 3  – 3ab(a + b) = 1 - 3ab;

6 a 2 b 2 (a + b) = 6 a 2 b 2  kết hợp với 3ab( a 2 + b 2 ) bằng cách đặt 3ab làm nhân tử chung ta được 3ab( a 2  + 2ab + b 2 ) = 3ab.

Thực hiện rút gọn K = 1.

18 tháng 9 2020

Mình camon nha ❤

11 tháng 7 2021

`a)a(2+b)+b(a+2)`

`=2a+ab+ab+2b`

`=2(a+b)+2ab`

`=2.10+2.(-36)`

`=20-72=-52`

`b)a^2+b^2`

`=(a+b)^2-2ab`

`=10^2-2.(-36)`

`=100+72=172`

`c)a^3+b^3`

`=(a+b)(a^2-ab+b^2)`

`=10[(a+b)^2-3ab]`

`=10[10^2-3.(-36)]`

`=10(100+108)`

`=10.208=2080`

11 tháng 7 2021

a, \(=>2a+ab+ab+2b=2\left(a+b+ab\right)=2\left(10-36\right)=-52\)

b, \(a^2+b^2=a^2+2ab+b^2-2ab=\left(a+b\right)^2-2ab=\left(10\right)^2-2\left(-36\right)=172\)

c, \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=10\left[\left(a+b\right)^2-3ab\right]\)

\(=10\left[10^2-3\left(-36\right)\right]=2080\)

22 tháng 4 2022

ké ý (b) ạ!!!

Câu 21: So sánh M = 232 và N = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)A. M > N                      B. M < N                    C. M = N                         D. M = N – 1Câu 22: Tìm giá trị lớn nhất của biểu thức B = 4 – 16x2 – 8xA. 5                         B. -5                               C. 8                                       D.-8  Câu 23: Biểu thức E = x2 – 20x +101 đạt giá trị nhỏ nhất khiA. x = 9                           B. x = 10                 C. x...
Đọc tiếp

Câu 21So sánh M = 232 và N = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

A. M > N                      B. M < N                    C. M = N                         D. M = N – 1

Câu 22Tìm giá trị lớn nhất của biểu thức B = 4 – 16x2 – 8x

A. 5                         B. -5                               C. 8                                       D.-8  

Câu 23Biểu thức E = x2 – 20x +101 đạt giá trị nhỏ nhất khi

A. x = 9                           B. x = 10                 C. x = 11                              D.x = 12

Câu 24Kết quả của phép chia 15x3y4 : 5x2y2 là

A. 3xy2                            B. -3x2y                        C. 5xy                                  D. 15xy2

Câu 25Kết quả của phép chia (6xy2 + 4x2y – 2x3) : 2x là

A. 3y2 + 2xy – x2                B. 3y2 + 2xy + x2           C. 3y2 – 2xy – x2                        D. 3y2 + 2xy

1
23 tháng 11 2021

Câu 21So sánh M = 232 và N = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

A. M > N                      B. M < N                    C. M = N                         D. M = N – 1

Câu 22Tìm giá trị lớn nhất của biểu thức B = 4 – 16x2 – 8x

A. 5                         B. -5                               C. 8                                       D.-8  

Câu 23Biểu thức E = x2 – 20x +101 đạt giá trị nhỏ nhất khi

A. x = 9                           B. x = 10                 C. x = 11                              D.x = 12

Câu 24Kết quả của phép chia 15x3y4 : 5x2y2 là

A. 3xy2                            B. -3x2y                        C. 5xy                                  D. 15xy2

Câu 25Kết quả của phép chia (6xy2 + 4x2y – 2x3) : 2x là

A. 3y2 + 2xy – x2                B. 3y2 + 2xy + x2           C. 3y2 – 2xy – x2                        D. 3y2 + 2xy