K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 5 2023

Bài 1:

Gọi biểu thức trên là $P$
\(P=\frac{\sqrt{x}(\sqrt{x}-3)+3(\sqrt{x}+3)}{(\sqrt{x}+3)(\sqrt{x}-3)}.\frac{x-9}{\sqrt{x}-3}\)

\(=\frac{x+9}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{(\sqrt{x}-3)(\sqrt{x}+3)}{\sqrt{x}-3}=\frac{x+9}{\sqrt{x}-3}\)

 

AH
Akai Haruma
Giáo viên
2 tháng 5 2023

Bài 2:
Để $(d)$ và $(d')$ song song với nhau thì:
$m^2-3=2m$

$\Leftrightarrow m^2-2m-3=0$

$\Leftrightarrow (m+1)(m-3)=0$

$\Leftrightarrow m+1=0$ hoặc $m-3=0$

$\Leftrightarrow m=-1$ hoặc $m=3$

a: Vì (d)//(d') nên \(a=-\dfrac{2}{3}\)

Vậy: \(\left(d\right):y=-\dfrac{2}{3}x+b\)

Thay x=4 và y=-3 vào (d), ta được:

\(-\dfrac{2}{3}\cdot4+b=-3\)

\(\Leftrightarrow b=-3+\dfrac{8}{3}=-\dfrac{1}{3}\)

b: Vì (d) vuông góc với (d') nên \(\dfrac{1}{3}a=-1\)

hay a=-3

vậy: (d): y=-3x+b

Thay x=2 và y=3 vào (d), ta được:

b-6=3

hay b=9

Bài 2: 

a: Để hai đường thẳng cắt nhau tại một điểm nằm trên trục Oy thì \(m^2-2=7\)

hay \(m\in\left\{3;-3\right\}\)

b: \(\Leftrightarrow\left\{{}\begin{matrix}10x-2y=6\\3x+2y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

18 tháng 9 2021

a) \(D=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)

\(=\dfrac{-3\sqrt{x}+3}{\sqrt{x}+3}.\dfrac{1}{\sqrt{x}-1}=\dfrac{-3}{\sqrt{x}+3}\)

b) \(D=-\dfrac{3}{\sqrt{x}+3}< -\dfrac{1}{4}\)

\(\Leftrightarrow12>\sqrt{x}+3\Leftrightarrow\sqrt{x}< 9\) 

\(\Leftrightarrow0\le x< 81\) và \(x\ne9\)

a) D=\(\left(\dfrac{2\sqrt{x}.\left(\sqrt{x}-3\right)+\sqrt{x}.\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-3\right)}\right)\) \(:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(\Leftrightarrow D=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}\) \(.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(\Leftrightarrow D=\dfrac{-3-3\sqrt{x}}{\sqrt{x}+3}.\dfrac{1}{\sqrt{x}+1}\)

\(\Leftrightarrow D=\dfrac{-3.\left(\sqrt{x}+1\right)}{\sqrt{x}+3}.\dfrac{1}{\sqrt{x}+1}\)

\(\Leftrightarrow D=\dfrac{-3}{\sqrt{x}+3}\)

b) Để D\(< \dfrac{-1}{4}\) \(\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}< \dfrac{-1}{4}\) 

\(\Leftrightarrow12>\sqrt{x}+3\Leftrightarrow9>\sqrt{x}\Leftrightarrow81>x\ge0\)

 

15 tháng 7 2023

(a) Với \(x\ge0,x\ne9\), ta có: \(A=\left(\dfrac{2}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{2\left(\sqrt{x}+3\right)+\left(\sqrt{x}-3\right)}{x-9}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{3\left(\sqrt{x}+1\right)}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{3}{\sqrt{x}+3}.\)

(b) Ta có: \(x=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)

\(\Rightarrow\sqrt{x}=2+\sqrt{3}\).

Thay vào biểu thức \(A\) (thỏa mãn điều kiện), ta được: \(A=\dfrac{3}{2+\sqrt{3}+3}=\dfrac{3}{5+\sqrt{3}}\)

\(=\dfrac{3\left(5-\sqrt{3}\right)}{5^2-\left(\sqrt{3}\right)^2}=\dfrac{15-3\sqrt{3}}{22}.\)

(c) Để \(A=\dfrac{3}{5}\Rightarrow\dfrac{3}{\sqrt{x}+2}=\dfrac{3}{5}\)

\(\Rightarrow\sqrt{x}+2=5\Leftrightarrow x=9\) (không thỏa mãn).

Vậy: \(x\in\varnothing.\)

(d) Để \(A>1\Leftrightarrow A-1>0\Rightarrow\dfrac{3}{\sqrt{x}+3}-1>0\)

\(\Leftrightarrow\dfrac{1-\sqrt{x}}{\sqrt{x}+3}>0\Rightarrow1-\sqrt{x}>0\) (do \(\sqrt{x}+3>0\forall x\inĐKXĐ\))

\(\Rightarrow x< 1\). Kết hợp với điều kiện thì \(0\le x< 1.\)

(e) \(A\in Z\Rightarrow\dfrac{3}{\sqrt{x}+3}\in Z\Rightarrow\left(\sqrt{x}+3\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+3=1\\\sqrt{x}+3=-1\\\sqrt{x}+3=3\\\sqrt{x}+3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=-2\left(VL\right)\\\sqrt{x}=-4\left(VL\right)\\\sqrt{x}=0\Leftrightarrow x=0\left(TM\right)\\\sqrt{x}=-6\left(VL\right)\end{matrix}\right.\)

Vậy: \(x=0.\)

1: \(P=\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\cdot\dfrac{\left(\sqrt{x}+3\right)^2}{-\left(1-\sqrt{x}\right)}+1\)

\(=\dfrac{-\sqrt{x}-3+\sqrt{x}}{\sqrt{x}}=-\dfrac{3}{\sqrt{x}}\)

NV
5 tháng 4 2022

2.

Hai đường thẳng cắt nhau tại 1 điểm thuộc trục hoành khi và chỉ khi:

\(-\dfrac{m}{2}=3-m\)

\(\Leftrightarrow m=6\)

26 tháng 5 2021

\(A=\dfrac{-\left(\sqrt{x}+1\right)\left(2+\sqrt{x}\right)-2\sqrt{x}\left(2-\sqrt{x}\right)+5\sqrt{x}+2}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(\sqrt{x}+2\right)^2}\)

\(A=\dfrac{-3\sqrt{x}-x-2-4\sqrt{x}+2x+5\sqrt{x}+2}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)

\(A=\dfrac{-x-2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)

\(A=\dfrac{-\sqrt{x}\left(\sqrt{x}+2\right)^3}{\left(\sqrt{x}+2\right)\left(2-\sqrt{x}\right)\sqrt{x}\left(3-\sqrt{x}\right)}=\dfrac{-\left(\sqrt{x}+2\right)^2}{\left(2-\sqrt{x}\right)\left(3-\sqrt{x}\right)}\)

 

26 tháng 5 2021

Mình sửa đầu bài

1: \(D=\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\)

2: \(\Leftrightarrow D=\dfrac{4\sqrt{x}+12-x+\sqrt{x}-13}{\sqrt{x}+3}\cdot\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)

\(\Leftrightarrow D=\dfrac{-x+5\sqrt{x}-1}{\sqrt{x}+3}\cdot\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)

\(\Leftrightarrow\dfrac{-x+5\sqrt{x}-1}{\sqrt{x}+3}\cdot\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\cdot\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}=1\)

\(\Leftrightarrow\left(-x+5\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)=\left(x+\sqrt{x}+1\right)\left(\sqrt{x}+3\right)\)

\(\Leftrightarrow-2x\sqrt{x}-x+10x+5\sqrt{x}-2\sqrt{x}-1=x\sqrt{x}+3x+x+3\sqrt{x}+\sqrt{x}+3\)

\(\Leftrightarrow-2x\sqrt{x}+9x-3\sqrt{x}-1=x\sqrt{x}+4x+4\sqrt{x}+3\)

\(\Leftrightarrow-3x\sqrt{x}+5x-7\sqrt{x}-4=0\)

Bạn xem lại đề nhé, nghiệm rất xấu