Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^8+3x^3+1\)
\(=x^8-x^4+4x^4+4\)
\(=\left(x^4-1\right)\cdot\left(x^4+1\right)+4\cdot\left(x^4+1\right)\)
\(=\left(x^4+1\right)\cdot\left(x^4-1+4\right)\)
\(=\left(x^4+1\right)\cdot\left(x^4+3\right)\)
\(x^3-3x^2+1-3x=\left(x^3+1\right)-3x^2-3x\)
\(=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1-3x\right)=\left(x+1\right)\left(x^2-4x+1\right)\)
\(x^4-x^2+2x+2\)
\(=x^4-2x^3+2x^2+2x^3-4x^2+4x+x^2-2x+2\)
\(=\left(x^4-2x^3+2x^2\right)+\left(2x^3-4x^2+4x\right)+\left(x^2-2x+2\right)\)
\(=x^2\left(x^2-2x+2\right)+2x\left(x^2-2x+2\right)+\left(x^2-2x+2\right)\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+1\right)\)
\(=\left(x^2-2x+2\right)\left(x+1\right)^2\)
\(\dfrac{1}{4}x^2+2xy+4y^2=\left(\dfrac{1}{2}x+2y\right)^2\)
\(x^3+27x+\left(x+3\right)\left(x-9\right)\)
⇒\(x^3+27x+x^2-6x-27\)
⇒\(x^3+x^2+21x-27\)
Chịu
\(x^4+2002x^2-2001x+2002\)
\(=x^4+2002x^2+x-2002x+2002\)
\(=\left(x^4+x\right)+\left(2002x^2-2002x+2002\right)\)
\(=x\left(x^3+1\right)+2002\left(x^2-x+1\right)\)
\(=x\left(x+1\right)\left(x^2-x+1\right)+2002\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left[x\left(x+1\right)+2002\right]\)
\(=\left(x^2-x+1\right)\left(x^2+x+2002\right)\)
\(x^4-5x^2y^2+4y^4\)
\(=\left(x^2\right)^2-2x^22y^2+\left(2y^2\right)^2-x^2y^2\)
\(=\left(x^2-2y^2\right)^2-\left(xy\right)^2\)
\(=\left(x^2-2y^2-xy\right)\left(x^2-2y^2+xy\right)\)
\(=x^2+x+2x+2=x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(x+2\right)\)
\(x^4-3x^2+9\)
\(=x^4+6x^2+9-9x^2\)
\(=\left(x^2+3\right)^2-3x^2\)
\(=\left(x^2-3x+3\right)\left(x^2+3x+3\right)\)
x4 - 3x2 + 9 = x4 - 2.x2.\(\frac{3}{2}\) + \(\frac{9}{4}\) + \(\frac{27}{4}\) = ( x2 - \(\frac{3}{2}\) ) - \(\frac{27}{4}\) = ......ko biết .....