Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}.1\frac{1}{24}.....1\frac{1}{360}\)
\(A=1+\left(\frac{1}{3}.\frac{1}{8}.\frac{1}{15}.\frac{1}{24}.....\frac{1}{360}\right)\)
Nếu đúng thì tk nha
\(A=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}.\frac{25}{24}.\frac{36}{35}......\frac{9801}{9800}=\frac{\left(2.3.4.5....99\right)^2}{1.3.2.4.3.5.4.6.....98.100}=\frac{2.3.4.5...99}{1.2.3.4.....98}.\frac{2.3.4.5....99}{3.4.5.6......100}=\frac{99}{1}.\frac{2}{100}=\frac{99}{50}\)
\(\frac{15}{39}.\left(7\frac{4}{5}.1\frac{2}{3}+8\frac{1}{3}.7,8\right)\)
\(=\frac{15}{39}.\left(7,8.1\frac{2}{3}+8\frac{1}{3}.7,8\right)\)
\(=\frac{5}{13}.\left\{7,8.\left(1\frac{2}{3}+8\frac{1}{3}\right)\right\}\)
\(=\frac{5}{13}.\left(7,8.10\right)\)
\(=\frac{5}{13}.78\)
\(=30\)
#It's the moment when you're in good mood, you accidentally click back =.=
1) Calculate
\(P=1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}....1\frac{1}{63}.1\frac{1}{80}\)
\(=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}....\frac{64}{63}.\frac{81}{80}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}....\frac{8.8}{7.9}.\frac{9.9}{8.10}\)
\(=\frac{2.9}{10}=\frac{9}{5}\)
ta có: 10010 + 1 > 10010 - 1
⇒ A = \(\frac{100^{10}+1}{100^{10}-1}< \frac{100^{10}+1-2}{100^{10}-1-2}=\frac{100^{10}-1}{100^{10}-3}=B\)
vậy A < B
\(1\dfrac{1}{3}.1\dfrac{1}{8}.1\dfrac{1}{15}......1\dfrac{1}{99}\)
\(=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.....\dfrac{100}{99}\)
\(=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}.\dfrac{4.4}{3.5}.....\dfrac{10.10}{9.11}\)
\(=\dfrac{2.2.3.3.4.4.....10.10}{1.3.2.4.3.5.....9.11}\) ( Bước này bạn bỏ đi cũng được )
\(=\dfrac{\left(2.3.4.....10\right).\left(2.3.4.....10\right)}{\left(1.2.3.....9\right).\left(3.4.5.....11\right)}\)
\(=\dfrac{\left(2.3.4.....9\right).10.2.\left(3.4.5.....10\right)}{1.\left(2.3.4.....9\right).\left(3.4.5.....10\right).11}\)
\(=\dfrac{10.2}{1.11}=\dfrac{20}{11}=1\dfrac{9}{11}\)
\(1\dfrac{1}{3}.1\dfrac{1}{8}.1\dfrac{1}{15}.....1\dfrac{1}{99}\)
\(=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.....\dfrac{100}{99}\)
\(=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}.\dfrac{4.4}{3.5}.....\dfrac{10.10}{9.11}\)
\(=\dfrac{2.2.3.3.4.4.....10.10}{1.3.2.4.3.5....9.11}\)
\(=\dfrac{2.3.4....10}{1.2.3....9}.\dfrac{2.3.4...10}{3.4.5....11}\)
\(=10.\dfrac{2}{11}=\dfrac{20}{11}\)
a) \(\frac{2}{3}+\frac{1}{3}\cdot\left(-\frac{2}{5}\right)\\ =\frac{2}{3}+\frac{-2}{15}\\ =\frac{10}{15}+\frac{-2}{15}\\ =\frac{8}{15}\)
b) \(0,75\cdot1\frac{7}{9}-1\frac{2}{5}:\frac{-21}{20}\\ =\frac{3}{4}\cdot\frac{16}{9}-\frac{7}{5}\cdot\frac{-20}{21}\\ =\frac{4}{3}-\frac{-4}{3}\\ =\frac{4}{3}+\frac{4}{3}\\ =\frac{4}{3}\cdot2\\ =\frac{8}{3}\)
c) \(\frac{-2}{17}+\frac{15}{23}+\frac{15}{-17}-\frac{-4}{19}+\frac{8}{23}\\ =\frac{-2}{17}+\frac{15}{23}+\frac{-15}{17}+\frac{4}{19}+\frac{8}{23}\\ =\left(\frac{-2}{17}+\frac{-15}{17}\right)+\left(\frac{15}{23}+\frac{8}{23}\right)+\frac{4}{19}\\ =\left(-1\right)+1+\frac{4}{19}\\ =0+\frac{4}{19}\\ =\frac{4}{19}\)
d) \(2019^0\cdot\left(6-2\frac{4}{5}\right)\cdot3\frac{1}{8}-1\frac{3}{5}:25\%\\ =1\cdot\left(\frac{30}{5}-\frac{14}{5}\right)\cdot\frac{25}{8}-\frac{8}{5}:\frac{1}{4}\\ =1\cdot\frac{16}{5}\cdot\frac{25}{8}-\frac{8}{5}\cdot4\\ =\frac{16}{5}\cdot\frac{25}{8}-\frac{32}{5}\\ =\frac{50}{5}-\frac{32}{5}\\ =\frac{18}{5}\)
e) \(\left(\frac{7}{8}-\frac{1}{2}\right)\cdot2\frac{2}{3}-\frac{3}{7}\cdot\left(2,5^2\right)\\ =\left(\frac{7}{8}-\frac{4}{8}\right)\cdot\frac{8}{3}-\frac{3}{7}\cdot6,25\\ =\frac{3}{8}\cdot\frac{8}{3}-\frac{3}{7}\cdot\frac{25}{4}\\ =1-\frac{75}{28}\\ =\frac{28}{28}-\frac{75}{28}\\ =\frac{-47}{28}\)
a, \(\frac{2}{3}+\frac{1}{3}.\left(\frac{-2}{5}\right)\)
= \(\frac{2}{3}+\frac{-2}{15}=\frac{8}{15}\)
b, \(0,75.1\frac{7}{9}-1\frac{2}{5}:\frac{-21}{20}\)
= \(\frac{3}{4}.\frac{16}{9}-\frac{7}{5}.\frac{-20}{21}\)
= \(\frac{4}{3}-\left(\frac{-4}{3}\right)=\frac{8}{3}\)
c, \(\frac{-2}{17}+\frac{15}{23}+\frac{15}{-17}+\frac{4}{19}+\frac{8}{23}\)
= \(\left(\frac{-2}{17}+\frac{-15}{17}\right)+\left(\frac{15}{23}+\frac{8}{23}\right)+\frac{4}{19}\)
= \(\left(-1\right)+1+\frac{4}{19}=0+\frac{4}{19}=\frac{4}{19}\)
d, \(\left(6-2\frac{4}{5}\right).3\frac{1}{8}-1\frac{3}{5}:25\%\)
=> \(\left(6-\frac{14}{5}\right).\frac{25}{8}-\frac{8}{5}:25\%\)
= \(\frac{16}{5}.\frac{25}{8}-\frac{8}{5}.25:100\)
= 10 - 0,4 = 9,6
e, \(\left(\frac{7}{8}-\frac{1}{2}\right).2\frac{2}{3}-\frac{3}{7}.\left(2,5^2\right)\)
=> \(\frac{3}{8}.\frac{8}{3}-\frac{3}{7}.6,25\)
= \(1-\frac{75}{28}=\frac{-47}{28}\)
\(B=\frac{5}{2\cdot1}+\frac{4}{1\cdot11}+\frac{3}{11\cdot2}+\frac{1}{2\cdot15}+\frac{13}{15\cdot4}\)
\(B=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
\(\frac{B}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(\frac{B}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)
\(\frac{B}{7}=\frac{1}{2}-\frac{1}{28}\)
\(\frac{B}{7}=\frac{13}{28}\)
\(B=\frac{13}{28}.7=\frac{13}{4}\)
Ta có \(1\frac{1}{3}=\frac{2^2}{3};1\frac{1}{8}=\frac{3^2}{8};.....\)
Nên thừa số thứ 98 là : \(1\frac{1}{9800}=\frac{99^2}{9800}\)
Ta có \(\frac{2^2}{3}.\frac{3^2}{8}......\frac{99^2}{9800}=\frac{2.2}{1.3}.\frac{3.3}{2.4}....\frac{99.99}{98.100}=\frac{2.2.3.3.....99.99}{1.3.2.4....98.100}\)
\(=\frac{\left(2.3.4...99\right).\left(2.3.4....99\right)}{\left(1.2.3....98\right).\left(3.4.5...100\right)}=\frac{99.2}{1.100}=\frac{198}{100}=\frac{99}{50}\)
giúp với !