K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2018

\(A=\frac{1}{2003.2002}-\frac{1}{2002.2001}-\frac{1}{2001.2000}-....-\frac{1}{3.2}-\frac{1}{2.1}\)

    \(=-\left(\frac{1}{2003.2002}+\frac{1}{2002.2001}+\frac{1}{2001.2000}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

     \(=-\left(\frac{1}{2003}-\frac{1}{2002}+\frac{1}{2002}-\frac{1}{2001}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-1\right)\)

      \(=-\left(\frac{1}{2003}-1\right)=-\left(-\frac{2002}{2003}\right)=\frac{2002}{2003}\)

Vậy ....

30 tháng 8 2019

Ta có : 

\(A=\frac{1}{2003\cdot2002}-\frac{1}{2002\cdot2001}-...-\frac{1}{3\cdot2}-\frac{1}{2\cdot1}\)

\(A=-\left(\frac{1}{2003\cdot2002}+\frac{1}{2002\cdot2001}+...+\frac{1}{3\cdot2}+\frac{1}{2\cdot1}\right)\)

\(A=-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2001\cdot2002}+\frac{1}{2002\cdot2003}\right)\)

\(A=-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2001}-\frac{1}{2002}+\frac{1}{2002}-\frac{1}{2003}\right)\)

\(A=-\left(1-\frac{1}{2003}\right)\)

\(A=-\frac{2002}{2003}\)

30 tháng 8 2019

\(A=\frac{1}{2003.2002}-\frac{1}{2002.2001}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2001.2002}\right)+\frac{1}{2002}.\frac{1}{2003}\)

\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2001}-\frac{1}{2002}\right)+\frac{1}{2002}.\frac{1}{2003}\)

\(=-\left(1-\frac{1}{2002}\right)+\frac{1}{2002}.\frac{1}{2003}\)

\(=-1+\frac{1}{2002}.+\frac{1}{2002}.\frac{1}{2003}\)

\(=-1+\frac{1}{2002}\left(1+\frac{1}{2003}\right)\)

\(=-1+\frac{1}{2002}.\frac{2004}{2003}\)

\(=-1+\frac{2}{2003}\)

\(=\frac{-2003+2}{2003}\)

\(=\frac{-2001}{2003}\)

30 tháng 8 2019

Bạn tham khảo ở lcik này ! Mình mới trả lời ở đó !

Câu hỏi của Nguyễn Thị Ngọc Ánh - Toán lớp 7 - Học toán với OnlineMath

https://olm.vn/hoi-dap/detail/228829251573.html

13 tháng 9 2020

\(\frac{1}{2003.2002}-\frac{1}{2002.2001}-...-\frac{1}{2.1}\)

\(=\frac{1}{2003.2002}-\left(\frac{1}{2002.2001}+\frac{1}{2001.2000}+...+\frac{1}{2.1}\right)\)

\(=\frac{1}{2003.2002}-\left(\frac{1}{2002}-\frac{1}{2001}+\frac{1}{2001}-\frac{1}{2000}+...+\frac{1}{2}-1\right)\)

\(=\frac{1}{2003.2002}-\left(\frac{1}{2002}-1\right)\)

\(=\frac{1}{2003.2002}-\left(\frac{1}{2002}-\frac{2002}{2002}\right)\)

\(=\frac{1}{2003.2002}-\frac{-2001}{2002}\)

\(=\frac{1}{2003}-\frac{1}{2002}+\frac{2001}{2002}\)

\(=\frac{1}{2003}+\frac{2000}{2002}\)

\(=\frac{1}{2003}+\frac{1000}{1001}\)

Ko chắc ạ! Bạn nào rãnh thì check hoặc nhận xét hộ!

14 tháng 7 2017

\(\dfrac{1}{2003.2002}-\dfrac{1}{2002.2001}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

= \(\dfrac{1}{2003.2002}-\left(\dfrac{1}{2002.2001}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)

= \(\dfrac{1}{2003.2002}-\left(\dfrac{1}{2002}-\dfrac{1}{2001}+...+\dfrac{1}{3}-\dfrac{1}{2}+\dfrac{1}{2}-1\right)\)

= \(\dfrac{1}{2003.2002}-\dfrac{1}{2002}+1\)

= \(\dfrac{1-2003+2003.2002}{2003.2002}\)

= \(1-\dfrac{2002}{2003.2002}=1-\dfrac{1}{2003}\) = \(\dfrac{2002}{2003}\)

15 tháng 7 2017

Em cảm ơn ạ

13 tháng 9 2020

\(-\frac{1}{2003\cdot2002}-\frac{1}{2002\cdot2001}-\frac{1}{2001\cdot2000}-...-\frac{1}{2\cdot1}\) 

\(=-1\left(\frac{1}{1\cdot2}+...+\frac{1}{2000\cdot2001}+\frac{1}{2001\cdot2002}+\frac{1}{2002\cdot2003}\right)\) 

\(=-1\left(\frac{1}{1}-\frac{1}{2}+...+\frac{1}{2000}-\frac{1}{2001}+\frac{1}{2001}-\frac{1}{2002}+\frac{1}{2002}-\frac{1}{2003}\right)\) 

\(=-1\left(1-\frac{1}{2003}\right)\) 

\(=-1\left(\frac{2003}{2003}-\frac{1}{2003}\right)\)              

\(=-1\cdot\frac{2002}{2003}\) 

\(=-\frac{2002}{2003}\)

29 tháng 6 2021

Ai giúp đi, làm ơnnnnnnnnnnnnnnnnnnn

29 tháng 6 2021

\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(B=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(B< \frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)

\(B< \frac{50}{60}\Leftrightarrow B< \frac{5}{6}\)

7 tháng 9 2015

lộn bạn đăng từng câu thôi

NV
24 tháng 6 2019

\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{60}\)

\(=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+...+\frac{1}{50}+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)

2/ \(A=\frac{1}{2}+\frac{1}{12}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(A=\frac{7}{12}+\frac{1}{5.6}+\frac{1}{7.8}+...+\frac{1}{99.100}>\frac{7}{12}\)

Tương tự câu trên ta có: \(A=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(A=\frac{1}{51}+...+\frac{1}{60}+\frac{1}{61}+...+\frac{1}{70}+\frac{1}{71}+...+\frac{1}{80}+\frac{1}{81}+...+\frac{1}{90}+\frac{1}{91}+...+\frac{1}{100}\)

\(A< \frac{1}{50}+...+\frac{1}{50}+\frac{1}{60}+...+\frac{1}{60}+\frac{1}{70}+...+\frac{1}{70}+\frac{1}{80}+...+\frac{1}{80}+\frac{1}{90}+...+\frac{1}{90}\)

\(A< 10.\frac{1}{50}+10.\frac{1}{60}+10.\frac{1}{70}+10.\frac{1}{80}+10.\frac{1}{90}\)

\(A< \frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}< \frac{5}{6}\)