K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2019

1. vd: đường thẳng d là đường trung trực của đoạn thẳng AB

- ta c/m đường thẳng d vuông góc vs đoạn thẳng AB tại trung điểm của AB

2. ta tìm giao của 2 đg thẳng sau đó c/m đg thẳng thứ 3 cx đi qua giao điểm đó

sử dụng các t/c đồng quy trong t.giác(sgk 7 tập 2)

\(1. Sử dụng hai góc kề bù có ba điểm nằm trên hai cạnh là hai tia đối nhau. 2. Ba điểm cùng thuộc một tia hoặc một một đường thẳng 3. Trong ba đoạn thẳng nối hai trong ba điểm có một đoạn thẳng bằng tổng hai đoạn thẳng kia. 4. Hai đoạn thẳng cùng đi qua hai trong ba điểm ấy cùng song song với đường thẳng thứ ba. 5. Hai đường thẳng cùng đi qua hai trong ba điểm ấy cùng vuông góc với...
Đọc tiếp

\(1. Sử dụng hai góc kề bù có ba điểm nằm trên hai cạnh là hai tia đối nhau. 2. Ba điểm cùng thuộc một tia hoặc một một đường thẳng 3. Trong ba đoạn thẳng nối hai trong ba điểm có một đoạn thẳng bằng tổng hai đoạn thẳng kia. 4. Hai đoạn thẳng cùng đi qua hai trong ba điểm ấy cùng song song với đường thẳng thứ ba. 5. Hai đường thẳng cùng đi qua hai trong ba điểm ấy cùng vuông góc với đường thẳng thứ ba. 6. Đường thẳng cùng đi qua hai trong ba điểm ấy có chứa điểm thứ ba. 7. Sử dụng tính chất đường phân giác của một góc, tính chất đường trung trực của đoạn thẳng, tính chất ba đường cao trong tam giác . 8. Sử dụng tính chất hình bình hành. 9. Sử dụng tính chất góc nội tiếp đường tròn. 10. Sử dụng góc bằng nhau đối đỉnh 11. Sử dụng trung điểm các cạnh bên, các đường chéo của hình thang thẳng hàng 12. Chứng minh phản chứng 13. Sử dụng diện tích tam giác tạo bởi ba điểm bằng 0 14. Sử dụng sự đồng qui của các đường thẳng.\)

0
15 tháng 4 2017

thiếu đề bài

28 tháng 2 2019

A B C H M N P I

Cm: a) Xét t/giác ABH và t/giác ACH

có AB = AC (gt)

 góc AHB = góc AHC = 900 (gt)

 AH : chung

=> t/giác ABH = t/giác ACH (ch - cgn)

=> góc BAH = góc HAC (hai góc tương ứng)         (Đpcm)

=> BH = CH (hai cạnh tương ứng)

=> H là trung điểm của BC

b) Xét t/giác AMH và t/giác ANH

có góc AMH = góc ANH = 900 (gt)

        AH : chung

  góc MAH = góc NAH (Cmt)

=> t/giác AMH = t/giác ANH (ch - gn)

=> AM = AN (hai cạnh tương ứng)

=> T/giác AMN là t/giác cân tại A

c) Gọi I là giao điểm của BC và MP

Ta có: T/giác AMH = t/giác ANH (Cmt)

=> MH = HN (hai cạnh tương ứng)

Mà HN = PH (gt)

=> MH = PH 

Ta lại có: góc AHM + góc MHB = 900 (phụ nhau)

              góc AHN + góc NHC = 900 (phụ nhau)

Và góc AHM = góc AHN (vì t/giác AHM = t/giác AHN)

=> góc MHB = góc NHC 

Mà góc NHC = góc BHP 

=> góc MHB = góc BHP

Xét t/giác MHI và t/giác PHI

có MH = PH (cmt)

   góc MHI = góc IHP (cmt)

  HI : chung

=> t/giác MHI = t/giác PHI (c.g.c)

=> MI = PI (hai cạnh tương ứng) => I là trung điểm của MP (1)

=> góc MIH = góc HIP (hai góc tương ứng)

Mà góc MIH + góc HIP = 1800

=> 2.góc MIH = 1800

=> góc MIH = 1800 : 2

=> góc MIH = 900

=> HI \(\perp\)MP (2)

Từ (1) và (2) suy ra HI là đường trung trực của đoạn thẳng MP

hay BC là đường trung trực của đoạc thẳng MP (Đpcm)

d) tự lm

28 tháng 2 2019

Cm: a) Xét t/giác ABH và t/giác ACH

có AB = AC (gt)

 góc AHB = góc AHC = 900 (gt)

 AH : chung

=> t/giác ABH = t/giác ACH (ch - cgn)

=> góc BAH = góc HAC (hai góc tương ứng)         (Đpcm)

=> BH = CH (hai cạnh tương ứng)

=> H là trung điểm của BC

b) Xét t/giác AMH và t/giác ANH

có góc AMH = góc ANH = 900 (gt)

        AH : chung

  góc MAH = góc NAH (Cmt)

=> t/giác AMH = t/giác ANH (ch - gn)

=> AM = AN (hai cạnh tương ứng)

=> T/giác AMN là t/giác cân tại A

c) Gọi I là giao điểm của BC và MP

Ta có: T/giác AMH = t/giác ANH (Cmt)

=> MH = HN (hai cạnh tương ứng)

Mà HN = PH (gt)

=> MH = PH 

Ta lại có: góc AHM + góc MHB = 900 (phụ nhau)

              góc AHN + góc NHC = 900 (phụ nhau)

Và góc AHM = góc AHN (vì t/giác AHM = t/giác AHN)

=> góc MHB = góc NHC 

Mà góc NHC = góc BHP 

=> góc MHB = góc BHP

Xét t/giác MHI và t/giác PHI

có MH = PH (cmt)

   góc MHI = góc IHP (cmt)

  HI : chung

=> t/giác MHI = t/giác PHI (c.g.c)

=> MI = PI (hai cạnh tương ứng) => I là trung điểm của MP (1)

=> góc MIH = góc HIP (hai góc tương ứng)

Mà góc MIH + góc HIP = 1800

=> 2.góc MIH = 1800

=> góc MIH = 1800 : 2

=> góc MIH = 900

=> HI MP (2)

Từ (1) và (2) suy ra HI là đường trung trực của đoạn thẳng MP

hay BC là đường trung trực của đoạc thẳng MP (Đpcm)

1 tháng 8 2017

a) Ta có MN vuông góc với AB ( do MN là đường trung trực của đoạn thẳng AB theo giả thuyết nên suy ra)
   và đường thẳng m cũng vuông góc với đoạn thẳng AB ( theo giả thiết)
nên từ đó ta suy ra MN//m (đpcm)
b) Từ MN//m ta suy ra MIC=ICB (hai góc so le trong)
                             mà ICB= 60 độ => MIC=60 độ 
c) Ta có HIB= HIN+NIB
    Mặt khác HIN=MIC=60 độ ( so le  trong)
       và NIB=90 độ (gt) 
  suy ra HIB= 60+90=150 độ
d) Vì theo giả thiết ta có đường thẳng a đi qua C và song song với MN và điểm C lại nằm trên cùng một đường thẳng m với điểm B mà đường thẳng m lại song song với đường thẳng MN nên suy ra đường thẳng a trùng với đường thẳng m và đi qua B