Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bố Nam gấp 3 lần tuổi Nam là tính theo năm, nhưng ngoài ra còn có trường hợp tháng tuổi. Và trường hợp cần tìm là 1 gia đình có ông (bà) 60 tuổi và cháu tròn 1 tháng tuổi, bởi 60 năm = 720 tháng. Do vậy thỏa mãn điều kiện đề bài: Hai người cùng nhà có số tuổi gấp 720 lần nhau"
a:
ΔABC vuông tại A nên BC là cạnh lớn nhất
=>AC<BC
mà AB<AC
nên AB<AC<BC
Xét ΔABC có AB<AC<BC
mà \(\widehat{C};\widehat{B};\widehat{BAC}\) lần lượt là góc đối diện của các cạnh AB,AC,BC
nên \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)
b: Ta có: \(\widehat{ABI}=\widehat{CBI}=\dfrac{\widehat{ABC}}{2}\)
\(\widehat{ACI}=\widehat{BCI}=\dfrac{\widehat{ACB}}{2}\)
mà \(\widehat{ACB}< \widehat{ACB}\)
nên \(\widehat{ICB}< \widehat{IBC}\)
Xét ΔIBC có \(\widehat{ICB}< \widehat{IBC}\)
mà IB,IC lần lượt là cạnh đối diện của các góc ICB và góc IBC
nên IB<IC
Gọi Cy là tia đối của tia CB.Dựng DH,DI,DK lần lượt vuông góc với BC,AC,AB.
Ta có:AD là cạnh chung,^IAD=^DAK => \(\Delta ADI=\Delta ADK\left(ch-gn\right)\Rightarrow DI=DK\left(1\right)\)
Lại có:BD là cạnh chung,^HBD=^KBD => \(\Delta BDH=\Delta BDK\left(ch-gn\right)\Rightarrow DH=DK\left(2\right)\)
Từ (1),(2) suy ra \(DI=DH\)
Do ^IBD và ^IAD là 2 tia phân giác cắt nhau tại D nên ^ACD là phân giác ngoài của \(\Delta\)BAI.
Mặt khác DI=DH,CD là cạnh chung => \(\Delta CDI=\Delta CDH\left(ch-cgv\right)\Rightarrow CD\) là tia phân giác ^DIH.
Ta có:\(\widehat{ICH}=\widehat{ABC}+\widehat{BAC}=30^0+130^0=160^0\)
\(\Rightarrow\widehat{ECI}=\frac{160^0}{2}=80^0\)
\(\widehat{CAE}=180^0-130^0=50^0\left(3\right)\)
Xét \(\Delta CAE\) có:\(\widehat{CEA}=180^0-\widehat{ACE}-\widehat{CAE}=180^0-50^0-80^0=50^0\left(4\right)\)
Từ (3),(4) suy ra \(\widehat{CAE}=\widehat{CEA}\Rightarrow\Delta CAE\) cân tại E
\(\Rightarrow AC=CE\left(đpcm\right)\)
Xét t/g ABC có
=> t/g ABC cân tại A.
=> AB = AC (t/c).
Có
=>
=> (do BD, CE là pg góc B và C)
Xét t/g ABD và t/g ACE có
:chung
AB = AC (cmt)
=> t/g ABD = t/g ACE (g.c.g)
=> BD = CE (2 cạnh t/ứ).
Bài 2:
Kẻ OF//BC(F thuộc AC)
=>OF//DE//BC
DE//BC
=>góc DEA=góc ACB
=>góc DEO=1/2*góc ACB
ED//OF
=>góc DEA=góc CFD và góc DEO=góc EOF
=>góc EOF=1/2*góc ACB
=>góc DEO=góc EOF
OF//BC
=>góc FOB=góc OBC=1/2góc ABC
góc BOE=góc BOF+góc EOF
=1/2(góc ABC+góc ACB)
Giải:
Gọi Cy là tia đối của tia CB. Dựng DH, DI, DK lần
lượt vuông góc với BC. AC, AB. Từ giả thiết ta suy
ra DI = DK; DK = DH nên suy ra DI = DH ( CI
nằm trên tia CA vì nếu điểm I thuộc tia đối của CA
thì DI > DH). Vậy CD là tia phân giác của ICy và ICy là góc ngoài của tam giâc ABC suy ra
\(ACD=DCy=\frac{A+B}{2}=\frac{30^0+130^0}{2}=80^0\)
Mặt khác CAE=1800-1300=500 . Do đó, CAE=500 nên tam giác CAE cân tại C
\(\Rightarrow CA=CE\)