K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2020

\(A=2^{32}+1\)

29 tháng 7 2016

a/ \(\left(m+n\right)\left(m^3-mn+n^2\right)=m^3+n^3\)

b/ \(\left(a-b-c\right)^2-\left(a-b+c\right)^2=\left(a-b-c-a+b-c\right)\left(a-b-c+a-b+c\right)=-2c\left(2a-2b\right)=-4c\left(a-b\right)\)c/ 

\(\left(1+x+x^2\right)\left(1-x\right)\left(1+x\right)\left(1-x+x^2\right)=\left(\left(1+x+x^2\right)\left(1-x\right)\right)\left(\left(1-x+x^2\right)\left(1+x\right)\right)=\left(1-x^3\right)\left(1+x^3\right)=1-x^6\)

11 tháng 7 2019

a) m3+n3

b)  (a -b-c+a-b+c)(a-b-c-a+b-c)

= -4c(a-b)

c) (1-x3)(1+x3)

=1-x6

5 tháng 1 2017

\(P=x^2-x\left(a+b\right)+ab+x^2-x\left(b+c\right)+bc+x^2-x\left(c+a\right)+ac+x^2\)

\(=4x^2-2x\left(a+b+c\right)+\left(ab+bc+ac\right)\)

Thay x được \(P=\left(a+b+c\right)^2-\left(a+b+c\right)^2+\left(ab+bc+ca\right)=ab+bc+ac\)

24 tháng 8 2017

2) 

M= (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)+x^2

   = x^2-bx-ax+ab+x^2-cx-bx+bc+x^2-ax-cx+ac+x^2

   = 4x^2-2bx-2ax-2cx+ab+bc+ac

   =4x^2-2x(a+b+c)+ab+bc+ac

   = 2x [ 2x-(a+b+c)2x] +ab+bc+ac (1)

Mặt khác : x=\(\frac{1}{2}\)a+\(\frac{1}{2}\)b+\(\frac{1}{2}\)c

              <=> x =\(\frac{1}{2}\)(a+b+c)

               <=>2x=a+b+c

=> Vế phải của (1) bằng : a+b+c (a+b+c-a-b-c)+ab+bc+ac

                                  <=>  ( a+b+c ).0 + ab+bc+ac

                                  <=>   ab+bc+ac

hay M= ab+bc+ac

Vậy M=ab+bc+ac

24 tháng 8 2017

(b+c )- a= ( b+c -a ) ( b+c + a ) = ( a+b+c -2a ) 2p = (2p - 2a )2p = (p-a ) 4p