K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

=(x+y)^2-4(x+y)+1=3^2-4.3+1=9-12+1=-2

23 tháng 7 2019

a) Ta có : \(A=x^2+2xy+y^2-4x-4y+1\)

\(=\left(x+y\right)^2-4\left(x+y\right)+1\)

Đến đây tự làm nha , mik chỉ hưỡng dẫn hướng làm thôi chứ ko giải ra hết cho bạn chép đâu nha, đến đây tự thế vào là ra . Tự túc là hạnh phúc  :)

Hok tốt . Nhìn câu b mik nản quá nên thôi :)

28 tháng 8 2019

2

a

\(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(\Rightarrow\left(x+y\right)^3=\left(-z\right)^3\)

\(\Rightarrow x^3+y^3+3x^2y+3xy^2=-z^3\)

\(\Rightarrow x^3+y^3+z^3=3xy\left(x+y\right)=3xyz\)

b

Đặt \(a-b=x;b-c=y;c-a=z\Rightarrow x+y+z=0\)

Ta có bài toán mới:Cho \(x+y+z=0\).Phân tích đa thức thành nhân tử:\(x^3+y^3+z^3\)

Áp dụng kết quả câu a ta được:

\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

28 tháng 1 2021

444448888855555695+777+6666555888852652522222222222222222256585965

28 tháng 1 2021

Đặt A=2a2b2+2c2a2+2b2c2 - a4 - b4 - c4

A= - ( a4 + b4 + c4 - 2(ab)2 - 2(bc)2-2(ca)2)

A= - (a4 + b4 + c4 - 2(ab)2 - 2(bc)2-2(ca)2 - 4(ca)2)

áp dụng hàng đẳng thức:

(a2-b2+c2)=a4+b4+c4-2(ab)2-2(bc)2+2(ca)2

A= - ( (a2-b2+c2)-4(ca)2)

A= - (a2-b2+c2-2ca) (a2-b2+c2+2ca)

CHÚC BẠN HỌC TỐT##

9 tháng 11 2023

 

1/\(=4a^2+4b^2+c^2+8ab-4bc-4ca+4b^2+4c^2+a^2+8bc-4ca-4ab+4a^2+4c^2+b^2+8ca-4bc-4ab=\)

\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)

2/

Ta có

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge-2\left(ab+bc+ca\right)=2\)

\(\Rightarrow P=9\left(a^2+b^2+c^2\right)\ge18\)

\(\Rightarrow P_{min}=18\)

6 tháng 9 2017

bạn ơi a2 là a^2 bạn nhé,mấy cái khác cũng tương tự,vì mình lười bấm nhé)

A=2a2b2+2b2c2+2a2c2−a4−b4−c4

⟺A=4a2c2−(a4+b4+c4−2a2b2+2a2c2−2b2c2)

⟺A=4a2c2−(a2−b2+c2)2

⟺A=(2ac+a2−b2+c2)(2ac−a2+b2−c2)

⟺A=((a+c)2−b2)(b2−(a−c)2)

⟺A=(a+b+c)(a+c−b)(b+a−c)(b−a+c)

Mà a, b, ca, b, c là 33 cạnh của tam giác nên:a+b+c>0;a+c−b>0;b+a−c>0;b−a+c>0⟹(a+b+c)(a+c−b)(b+a−c)(b−a+c)>0
⟹A>0 (Dpcm)

13 tháng 8 2017

a) \(6x^2-11xy+3y^2=6x^2-2xy-9xy+3y^2=2x.\left(3x-y\right)-3y.\left(3x-y\right)\)

\(\left(3x-y\right).\left(2x-3y\right)\)

13 tháng 8 2017

b) PP: dùng hệ số bất định

ta có: x^4 -3x^3+6x^2-5x+3=(x^2+ax-1)(x^2 +bx-3)  (*)

                                           =x^4 +bx^3-3x^2+ax^3 +(a+b)x^2 -3ax  -x^2-bx+3

                                           =x^4 +(b+a)x^3 +(a+b-3-1)x^2 -(3a+b)x +3

=> a+b=-3

    a+b-4=6          

   3a+b=5

<=> a=7/2 ;b=13/2  thay vào (*) ta đc: x^4 -3x^3+6x^2-5x+3=(x^2+\(\frac{7}{2}\).x -1)(x^2 +\(\frac{13}{2}\).x -3)

Hay x^4 -3x^3+6x^2-5x+3= \(\frac{1}{4}.\left(2x^2+7x-2\right)\left(2x^2+13-6\right)\)