K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2018

\(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

Viết lại đề như sau: \(\hept{\begin{cases}x+y+z=3\\2xy-z^2=9\end{cases}}\)

\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz-2xy+z^2=0\)

\(\Leftrightarrow x^2+y^2+2z^2+2yz+2xz=0\)

\(\Leftrightarrow\left(x+z\right)^2+\left(y+z\right)^2=0\)

\(\Leftrightarrow x=y=-z\Leftrightarrow\frac{1}{a}=\frac{1}{b}=-\frac{1}{c}\)

\(\Leftrightarrow a=b=-c\)

\(M=\left(a-3b+c\right)^{2018}=\left(a-3a-a\right)^{2018}=\left(3a\right)^{2018}\)

6 tháng 12 2018

sai đề rồi hay sao ấy , thử mà ko đc

6 tháng 12 2018

đúng 100% nha

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Lời giải:

\(P=\frac{a^4-a-b^4+b}{(b^3-1)(a^3-1)}+\frac{2(a-b)}{a^2b^2+3}\)

\(=\frac{(a^4-b^4)-(a-b)}{a^3b^3-(a^3+b^3)+1}+\frac{2(a-b)}{a^2b^2+3}=\frac{(a-b)[(a+b)(a^2+b^2)-1]}{a^3b^3-[(a+b)^3-3ab(a+b)]+1}+\frac{2(a-b)}{a^2b^2+3}\)

\(=\frac{(a-b)[(a^2+b^2)-(a+b)^2]}{a^3b^3-[1-3ab]+1}+\frac{2(a-b)}{a^2b^2+3}=\frac{-2ab(a-b)}{a^3b^3+3ab}+\frac{2(a-b)}{a^2b^2+3}\)

\(=\frac{-2(a-b)}{a^2b^2+3}+\frac{2(a-b)}{a^2b^2+3}=0\)

 

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Lời giải:

\(P=\frac{a^4-a-b^4+b}{(b^3-1)(a^3-1)}+\frac{2(a-b)}{a^2b^2+3}\)

\(=\frac{(a^4-b^4)-(a-b)}{a^3b^3-(a^3+b^3)+1}+\frac{2(a-b)}{a^2b^2+3}=\frac{(a-b)[(a+b)(a^2+b^2)-1]}{a^3b^3-[(a+b)^3-3ab(a+b)]+1}+\frac{2(a-b)}{a^2b^2+3}\)

\(=\frac{(a-b)[(a^2+b^2)-(a+b)^2]}{a^3b^3-[1-3ab]+1}+\frac{2(a-b)}{a^2b^2+3}=\frac{-2ab(a-b)}{a^3b^3+3ab}+\frac{2(a-b)}{a^2b^2+3}\)

\(=\frac{-2(a-b)}{a^2b^2+3}+\frac{2(a-b)}{a^2b^2+3}=0\)

 

Vì \(a\ne1,b\ne1,c\ne1\)\(\Rightarrow a-1\ne0,b-1\ne0,c-1\ne0\)

Ta có : \(B=\frac{\left(a-1\right)^2}{\left(b-1\right)\left(c-1\right)}+\frac{\left(b-1\right)^2}{\left(c-1\right)\left(a-1\right)}+\frac{\left(c-1\right)^2}{\left(a-1\right)\left(b-1\right)}\)

\(=\frac{\left(a-1\right)^3}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}+\frac{\left(b-1\right)^3}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}+\frac{\left(c-1\right)^3}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}\)

\(=\frac{\left(a-1\right)^3+\left(b-1\right)^3+\left(c-1\right)^3}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}\left(1\right)\)

Lại có : \(\left(a-1\right)+\left(b-1\right)+\left(c-1\right)=\left(a+b+c\right)-3=3-3=0\)

Ta chứng minh tính chất sau : Nếu \(x+y+z=0\)thì \(x^3+y^3+z^3=3xyz\)

Thật vậy :

Ta có : \(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y+z\right)^3-3\left(x+y\right)z-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)[\left(x+y+z\right)^2-3\left(x+y\right)z-3xy]=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2yz+2zx-3zx-3yz-3xy\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)luôn đúng , do \(x+y+z=0\)

Áp dụng vào , khi đó : \(\left(1\right)\Leftrightarrow\)\(\frac{3\left(a-1\right)\left(b-1\right)\left(c-1\right)}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}\)

Vì \(a-1\ne0,b-1\ne0,c-1\ne0\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)\ne0\)

\(\Rightarrow B=3\)

Vậy \(B=3\)

DD
14 tháng 1 2021

\(B=\frac{\left(a-1\right)^3+\left(b-1\right)^3+\left(c-1\right)^3}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}\)

Đặt \(a-1=x,b-1=y,z-1=z\)thì \(x+y+z=0\).

\(B=\frac{x^3+y^3+z^3}{xyz}=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)+3xyz}{xyz}=\frac{3xyz}{xyz}=3\)

AH
Akai Haruma
Giáo viên
22 tháng 1 2022

Bài 1: Ta có:

\(M=\frac{ad}{abcd+abd+ad+d}+\frac{bad}{bcd.ad+bc.ad+bad+ad}+\frac{c.abd}{cda.abd+cd.abd+cabd+abd}+\frac{d}{dab+da+d+1}\)

\(=\frac{ad}{1+abd+ad+d}+\frac{bad}{d+1+bad+ad}+\frac{1}{ad+d+1+abd}+\frac{d}{dab+da+d+1}\)

$=\frac{ad+abd+1+d}{ad+abd+1+d}=1$

AH
Akai Haruma
Giáo viên
22 tháng 1 2022

Bài 2:

Vì $a,b,c,d\in [0;1]$ nên

\(N\leq \frac{a}{abcd+1}+\frac{b}{abcd+1}+\frac{c}{abcd+1}+\frac{d}{abcd+1}=\frac{a+b+c+d}{abcd+1}\)

Ta cũng có:
$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$

Tương tự:

$c+d\leq cd+1$

$(ab-1)(cd-1)\geq 0\Rightarrow ab+cd\leq abcd+1$

Cộng 3 BĐT trên lại và thu gọn thì $a+b+c+d\leq abcd+3$

$\Rightarrow N\leq \frac{abcd+3}{abcd+1}=\frac{3(abcd+1)-2abcd}{abcd+1}$

$=3-\frac{2abcd}{abcd+1}\leq 3$

Vậy $N_{\max}=3$

7 tháng 1 2021

Giải

a, 2A+3B=0 <=> \(\dfrac{10}{2m+1}+\dfrac{12}{2m-1}=0\)

<=>10(2m-1)+ 12(2m+1) =0

<=> 44m +2 =0 

<=> m=-1/22

b, AB= A+B <=> \(\dfrac{20}{\left(2m-1\right)\left(2m+1\right)}=\dfrac{5}{2m+1}+\dfrac{4}{2m-1}\)

<=> 20 = 5(2m -1) + 4(2m+1) 

<=> 20 = 18m - 1

<=> m=7/6

10 tháng 12 2021

b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)