Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/
\(\Leftrightarrow cos3x-\sqrt{3}sin3x=\sqrt{3}cos2x-sin2x\)
\(\Leftrightarrow\frac{1}{2}cos3x-\frac{\sqrt{3}}{2}sin3x=\frac{\sqrt{3}}{2}cos2x-\frac{1}{2}sin2x\)
\(\Leftrightarrow cos\left(3x+\frac{\pi}{3}\right)=cos\left(2x+\frac{\pi}{6}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+\frac{\pi}{3}=2x+\frac{\pi}{6}+k2\pi\\3x+\frac{\pi}{3}=-2x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=-\frac{\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)
b/
\(\Leftrightarrow cosx-\sqrt{3}sinx=sin2x-\sqrt{3}cos2x\)
\(\Leftrightarrow\frac{1}{2}cosx-\frac{\sqrt{3}}{2}sinx=\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x\)
\(\Leftrightarrow cos\left(x+\frac{\pi}{3}\right)=sin\left(2x-\frac{\pi}{3}\right)\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=sin\left(\frac{\pi}{6}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{6}-x+k2\pi\\2x-\frac{\pi}{3}=\frac{5\pi}{6}+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow2\left(sinx+cosx\right)^3-6sinx.cosx\left(sinx+cosx\right)+2sinx.cosx\left(sinx+cosx\right)=\sqrt{2}\)
\(\Leftrightarrow2\left(sinx+cosx\right)^3-4sinx.cosx\left(sinx+cosx\right)=\sqrt{2}\)
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=t^2-1\end{matrix}\right.\)
\(\Rightarrow2t^3-2t\left(t^2-1\right)=\sqrt{2}\)
\(\Leftrightarrow2t=\sqrt{2}\Leftrightarrow t=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{6}+k2\pi\\x+\frac{\pi}{4}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow x=...\)
1.
\(sin^3x+cos^3x=1-\dfrac{1}{2}sin2x\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)=1-sinx.cosx\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)=1-sinx.cosx\)
\(\Leftrightarrow\left(1-sinx.cosx\right)\left(sinx+cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx.cosx=1\\sinx+cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=2\left(vn\right)\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=1\end{matrix}\right.\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\x+\dfrac{\pi}{4}=\pi-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)
2.
\(\left|cosx-sinx\right|+2sin2x=1\)
\(\Leftrightarrow\left|cosx-sinx\right|-1+2sin2x=0\)
\(\Leftrightarrow\left|cosx-sinx\right|-\left(cosx-sinx\right)^2=0\)
\(\Leftrightarrow\left|cosx-sinx\right|\left(1-\left|cosx-sinx\right|\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\\left|cosx-sinx\right|=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=k\pi\\cos^2x+sin^2x-2sinx.cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\1-sin2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\sin2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)
1.
\(\Leftrightarrow4sinx.cosx+3\left(sinx-cosx\right)=0\)
Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=1-t^2\end{matrix}\right.\)
Pt trở thành:
\(2\left(1-t^2\right)+3t=0\)
\(\Leftrightarrow-2t^2+3t+2=0\Rightarrow\left[{}\begin{matrix}t=2\left(l\right)\\t=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow sinx-cosx=-\frac{1}{2}\)
\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=-\frac{1}{2}\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=-\frac{1}{2\sqrt{2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+arcsin\left(-\frac{1}{2\sqrt{2}}\right)+k2\pi\\x=\frac{5\pi}{4}-arcsin\left(-\frac{1}{2\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)
2.
Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sin2x=2sinx.cosx=1-t^2\end{matrix}\right.\)
Pt trở thành:
\(1-t^2-4t=4\)
\(\Leftrightarrow t^2+4t+3=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow sinx-cosx=-1\)
\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=-1\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\x-\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\frac{3\pi}{2}+k2\pi\end{matrix}\right.\)
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sin2x=2sinxcosx=t^2-1\end{matrix}\right.\)
Pt trở thành:
\(\left(1+\sqrt{2}\right)t-t^2+1-1-\sqrt{2}=0\)
\(\Leftrightarrow t^2-\left(1+\sqrt{2}\right)t+\sqrt{2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=\sqrt{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1\\\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\\sin\left(x+\frac{\pi}{4}\right)=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow x=?\)