Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d: =-452+67-75+452=-8
e: \(=1997-\left[10\cdot8:8+8\right]=1997-11=1986\)
1/(1*2)+1/(2*3)+1/(3*4)+...+1/(2005*2006)
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/2005-1/2006
=1-1/2006
=2005/2006
a) A=1-2-3+4+5-6-7+.....+1996+1997-1998-1999+2000
=(1-2-3+4)+(5-6-7+8)+...+(1997-1998-1999+2000)
=0
b) B=1-3+5-7+....+2001-2003+2005
=(1-3)+(5-7)+...+(2001-2003)+2005
=-2.501+2005
=-1002+2005
=1003
c) C=1-2-3+4+5-6-7+8+.....+1993-1994-1995+1996+1997
=(1-2-3+4)+(5-6-7+8)+...+(1993-1994-1995+1996)+1997
=1997
d) D=1000+998+996+......+10-999-997-995-...-11
=(1000-999)+(998-997)+(996-995)+....+(12-11)+10
=1.495+10
=595
a, => x^2-4 = 0 hoặc x^3+!25 = 0
=> x^2=4 hoặc x^3 = -125
=> x=-2 hoặc x=2 hoặc x=-5
b, A = 2001 + 4 - 1997 = 8
Tk mk nha
a) \(\left(x^2-4\right)\left(x^3+125\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x^2-4=0\\x^3+125=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=0+4=4\\x^3=0-125=-125\end{cases}}}\Leftrightarrow\hept{\begin{cases}x=\sqrt{4}=2\\x=-5\end{cases}}\)
Vậy \(x=-5\)hoặc \(x=2\)
1: =>3^x=81
=>x=4
2: =>2^x=8
=>x=3
3: =>x^3=2^3
=>x=2
4: =>x^20-x=0
=>x(x^19-1)=0
=>x=0 hoặc x=1
5: =>2^x=32
=>x=5
6: =>(2x+1)^3=9^3
=>2x+1=9
=>2x=8
=>x=4
7: =>x^3=115
=>\(x=\sqrt[3]{115}\)
8: =>(2x-15)^5-(2x-15)^3=0
=>(2x-15)^3*[(2x-15)^2-1]=0
=>2x-15=0 hoặc (2x-15)^2-1=0
=>2x-15=0 hoặc 2x-15=1 hoặc 2x-15=-1
=>x=15/2 hoặc x=8 hoặc x=7
1. Tìm số tự nhiên x biết:
1) \(3^x.3=243\)
\(3^x=243:3\)
\(3^x=81\)
\(3^x=3^4\)
\(\Rightarrow x=4\)
_____
2) \(7.2^x=56\)
\(2^x=56:7\)
\(2^x=8\)
\(2^x=2^3\)
\(\Rightarrow x=3\)
_____
3) \(x^3=8\)
\(x^3=2^3\)
\(\Rightarrow x=3\)
_____
4) \(x^{20}=x\)
\(x^{20}-x=0\)
\(x\left(x^{19}-1\right)=0\)
\(\Rightarrow x=0\) hoặc \(x=1\)
5) \(2^x-15=17\)
\(2^x=17+15\)
\(2^x=32\)
\(2^x=2^5\)
\(\Rightarrow x=5\)
_____
6) \(\left(2x+1\right)^3=9.81\)
\(\left(2x+1\right)^3=729=9^3\)
\(\rightarrow2x+1=9\)
\(2x=9-1\)
\(2x=8\)
\(x=8:2\)
\(\Rightarrow x=4\)
_____
7) \(x^6:x^3=125\)
\(x^3=125\)
\(x^3=5^3\)
\(\Rightarrow x=5\)
_____
8) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\rightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\left(2x-15\right)^3.\left[\left(2x-15\right)^2-1\right]=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\x=7\\x=8\end{matrix}\right.\)
_____
9) \(3^{x+2}-5.3^x=36\)
\(3^x.\left(3^2-5\right)=36\)
\(3^x.\left(9-5\right)=36\)
\(3^x.4=36\)
\(3^x=36:4\)
\(3^x=9\)
\(3^x=3^2\)
\(\Rightarrow x=2\)
_____
10) \(7.4^{x-1}+4^{x+1}=23\)
\(\rightarrow7.4^{x-1}+4^{x-1}.4^2=23\)
\(4^{x-1}.\left(7+4^2\right)=23\)
\(4^{x-1}.\left(7+16\right)=23\)
\(4^{x-1}.23=23\)
\(4^{x-1}=23:23\)
\(4^{x-1}=1\)
\(4^{x-1}=4^1\)
\(\rightarrow x-1=0\)
\(x=0+1\)
\(\Rightarrow x=1\)
Chúc bạn học tốt
\(\frac{3}{4}x-\frac{1}{2}=2\left(x-4\right)+\frac{1}{4}x\)
\(\Leftrightarrow\frac{3}{4}x-\frac{1}{2}=2\text{x}-8+\frac{1}{4}x\)
\(\Leftrightarrow\frac{3}{4}x-2\text{x}-\frac{1}{4}x=-8+\frac{1}{2}\)
\(\Leftrightarrow\frac{3-8-1}{4}x=\frac{-15}{2}\)
\(\Leftrightarrow-\frac{3}{2}x=-\frac{15}{2}\Leftrightarrow x=\frac{-15}{-3}=5\)
Vậy x = 5
\(\frac{x-1}{12}+\frac{x-1}{20}+\frac{x-1}{30}+\frac{x-1}{42}+\frac{x-1}{56}+\frac{x-1}{72}=\frac{16}{9}\)
\(\Rightarrow\left(x-1\right)\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)=\frac{16}{9}\)
\(\Rightarrow\left(x-1\right)\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)=\frac{16}{9}\)
\(\Rightarrow\left(x-1\right)\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)=\frac{16}{9}\)
\(\Rightarrow\left(x-1\right)\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)
\(\Rightarrow\left(x-1\right)\cdot\frac{2}{9}=\frac{16}{9}\)
\(\Rightarrow\left(x-1\right)=\frac{16}{9}\div\frac{2}{9}\)
\(\Rightarrow\left(x-1\right)=\frac{16}{9}\cdot\frac{9}{2}\)
\(\Rightarrow x-1=8\Rightarrow x=9\)
Vậy x = 9
\(1+\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\left(x+1\right)}=\frac{4008}{2005}\)
\(\Rightarrow\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{4008}{2005}\)
\(\Rightarrow\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{4008}{2005}\)
\(\Rightarrow2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{4008}{2005}\)
\(\Rightarrow\left(1-\frac{1}{x+1}\right)=\frac{4008}{2005}\div2\)
\(\Rightarrow\frac{x}{x+1}=\frac{2004}{2005}\)
\(\Rightarrow2005\text{x}=2004\left(x+1\right)\)
\(\Rightarrow2005\text{x}=2004\text{x}+2004\)
\(\Rightarrow2005\text{x}-2004\text{x}=2004\)
\(\Rightarrow x=2004\)
Vậy x = 2004
\(1997-\left[10.\left(2^3-56\right):2^3+2^3\right].2005\)
\(=1997-\left[10.\left(8-56\right):8+8\right].2005\)
\(=1997-\left[10.\left(-48\right):8+8\right].2005\)
\(=1997-\left[\left(-60\right)+8\right].2005\)
\(=1997-\left(-52\right).2005\)
\(=1997-\left(-104260\right)=106257\)
1997-[10.(23- 56): 23+23 ].2005
= 1997-[10.(8 - 56): 23+23 ].2005
= 1997-[10.(-48): 23+23 ].2005
= 1997-[10.(-48): 8 + 8 ].2005
= 1997-(-52).2005
= 106257