Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Xét rằng x > 7 <=> A < 0
Lại xét x < 7 thì mẫu là một số nguyên dương. P/s A có tử và mẫu đều là số dương, mà tử lại bất biến
A(max) <=> mẫu 7 - x nhỏ nhất <=> 7 - x = 1 => x = 7 - 1 = 6 <=> A = 1
Từ những điều trên thì A sẽ có GTLN khi và chỉ khi x = 6
\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\\ A_{min}=\dfrac{1}{9}\Leftrightarrow x=\dfrac{3}{5}\\ B=\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\le\dfrac{2009}{2008}\\ B_{max}=\dfrac{2009}{2008}\Leftrightarrow x=\dfrac{3}{5}\\ C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\le1\dfrac{2}{3}\\ C_{max}=1\dfrac{2}{3}\Leftrightarrow\dfrac{1}{3}x=-4\Leftrightarrow x=-12\)
\(A=\dfrac{1}{x-3}\Rightarrow x-3\inƯ\left(1\right)=\left\{\pm1\right\}\)
x-3 | 1 | -1 |
x | 4 | 2 |
\(B=\dfrac{7-x}{x-5}=\dfrac{-\left(x-5-2\right)}{x-5}=\dfrac{-\left(x-5\right)+2}{x-5}\Rightarrow x-5\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x-5 | 1 | -1 | 2 | -2 |
x | 6 | 4 | 7 | 3 |
\(C=\dfrac{5x-19}{x-5}=\dfrac{5\left(x-5\right)+6}{x-5}\Rightarrow x-5\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
x-5 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 6 | 4 | 7 | 3 | 8 | 2 | 11 | -1 |
b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)
Đặt \(x=15k;y=20k;z=24k\)
Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)
Lê Vũ Anh Thư
nếu lớn nhất thì có thể, vì ta sẽ tìm đc x=3
còn nếu bé nhất thì x càng to, A càng nhỏ
sao tìm đc giá trị nhỏ nhất?
\(A=\dfrac{1}{x-3}\)
\(MIN_A\Rightarrow A\in Z^-\Rightarrow x-3\in Z^-\)
\(MIN_A\Rightarrow MAX_{x-3}\)
\(\Rightarrow x-3=-1\Rightarrow x=2\)
\(\Rightarrow MIN_A=\dfrac{1}{2-3}=\dfrac{1}{-1}=-1\)
\(C=\dfrac{5x-19}{x-4}\)
\(MIN_C\Rightarrow C\in Z^-\Rightarrow x-4\in Z^-\)
\(MIN_C\Rightarrow MAX_{x-4}\)
\(\Rightarrow x-4=-1\Rightarrow x=3\)
\(\Rightarrow MIN_C=\dfrac{5.3-19}{3-4}=\dfrac{15-19}{-1}=\dfrac{-4}{-1}=4\)
\(B=\dfrac{7-x}{x-5}\)
\(MIN_B\Rightarrow B\in Z^-\Rightarrow x-5\in Z^-\)
\(MIN_B\Rightarrow MAX_{x-5}\)
\(\Rightarrow x-5=-1\Rightarrow x=4\)
\(\Rightarrow MIN_B=\dfrac{7-4}{4-5}=\dfrac{3}{-1}=-3\)
a) điều kiện : \(x\ne3\) ta có \(A=\dfrac{1}{x-3}\) không thể tìm GTNN được
b) \(B=\dfrac{7-x}{x-5}\) điều kiện : \(x\ne5\)
\(=\dfrac{-\left(x-5\right)+2}{x-5}=\dfrac{2}{x-5}-1\)
ta có : B nhỏ nhất \(\Leftrightarrow\dfrac{2}{x-5}\) nhỏ nhất
mà \(\dfrac{2}{x-5}\) không thể tìm được GTNN
\(\Rightarrow B\) không có giá trị nhỏ nhất
c) \(C=\dfrac{5x-19}{x-4}\) điều kiện : \(x\ne4\)
\(=\dfrac{5x-20+1}{x-4}=\dfrac{1}{x-4}+5\)
ta có : C nhỏ nhất \(\Leftrightarrow\dfrac{1}{x-4}\) nhỏ nhất
mà \(\dfrac{1}{x-4}\) không thể tìm được GTNN
\(\Rightarrow C\) không có giá trị nhỏ nhất