Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=1+7+7^2+...7^{50}\)
\(7\cdot A=7+7^2+7^3+.....+7^{51}\)
\(7\cdot A-A=\left(7+7^2+7^3+.....+7^{51}\right)-\left(1+7+7^2+....+7^{50}\right)\)
\(A.\left(7-1\right)=\left(7-7\right)+\left(7^2-7^2\right)+.....+\left(7^{50}-7^{50}\right)+7^{51}-1\)
\(A\cdot6=7^{51}-1\Rightarrow A=\frac{7^{51}-1}{6}\)
\(x:\left[\frac{8}{5}.\left(\frac{2}{3}\right)^2-\frac{2}{5}\right]=\frac{15}{7}+\frac{6}{5}.\left[\left(\frac{15}{7}\right)^2-\frac{50}{49}\right]\)
\(\Rightarrow x:\frac{14}{45}=\frac{15}{7}+\frac{6}{5}.\frac{25}{7}\)
\(\Rightarrow x:\frac{14}{45}=\frac{15}{7}+\frac{30}{7}\)
\(\Rightarrow x:\frac{14}{45}=\frac{45}{7}\)
\(\Rightarrow x=\frac{45}{7}.\frac{14}{45}\)
\(\Rightarrow x=2\)
Vậy \(x=2.\)
Chúc bạn học tốt!
\(x:\left[\dfrac{8}{5}\cdot\left(\dfrac{2}{3}\right)^2-\dfrac{2}{5}\right]=\dfrac{15}{7}+\dfrac{6}{5}\left[\left(2\dfrac{1}{7}\right)^2-\dfrac{50}{49}\right]\)
\(\Leftrightarrow x:\left[\dfrac{32}{45}-\dfrac{18}{45}\right]=\dfrac{15}{7}+\dfrac{6}{5}\cdot\left(\dfrac{225}{49}-\dfrac{50}{49}\right)\)
\(\Leftrightarrow x:\dfrac{14}{45}=\dfrac{15}{7}+\dfrac{6}{5}\cdot\dfrac{25}{7}\)
\(\Leftrightarrow x:\dfrac{14}{45}=\dfrac{45}{7}\)
\(\Leftrightarrow x=2\)
a)Đặt \(A=7^6+7^5-7^4\)
\(A=7^4\left(7^2+7-1\right)\)
\(A=7^4\cdot55⋮55\left(đpcm\right)\)
b)\(A=1+5+5^2+5^3+...+5^{50}\)
\(5A=5+5^2+5^3+5^4+...+5^{51}\)
\(5A-A=\left(5+5^2+5^3+5^4+...+5^{51}\right)-\left(1+5+5^2+5^3+...+5^{50}\right)\)
\(4A=5^{51}-1\)
\(A=\frac{5^{51}-1}{4}\)
a)
Ta có :
\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55\)
=> Chia hết cho 5
b)
Ta có :
\(A=1+5+5^2+....+5^{50}\)
\(5A=5+5^2+....+5^{51}\)
=> 5A - A = \(\left(5+5^2+....+5^{51}\right)\)\(-\left(1+5+....+5^{50}\right)\)
\(\Rightarrow4A=5^{51}-1\)
\(\Rightarrow A=\frac{5^{51}-1}{4}\)
\(M=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot\cdot\cdot\cdot\frac{9999}{10000}\)
\(=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot\cdot\cdot\cdot\frac{99.101}{100.100}\)
\(=\frac{1}{2}\cdot\frac{101}{100}=\frac{101}{200}\)
Xét vế phải :
\(VP=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}-1\)
\(=2.\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)
\(=2\left[\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right]\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}=VT\Rightarrow\left(đpcm\right)\)
a) 76 + 75 - 74 = 74 ( 72 + 7 - 1) = 74 . 55\(⋮\)55
b) A = 1 + 5 + 52 + ... + 550
5A = 5 + 52 + 53 + ... + 551
5A - A = ( 5 + 52 + 53 + ... + 551) - ( 1 + 5 + 52 + ... + 550)
4A = 551 - 1
A = \(\frac{5^{51}-1}{4}\)
\(\frac{9}{7}-\frac{2}{7}\times\frac{49}{6}+\frac{1}{3}=\frac{9}{7}-\frac{7}{3}+\frac{1}{3}=\frac{9}{7}-\left(\frac{7}{3}-\frac{1}{3}\right)=\frac{9}{7}-2=-\frac{5}{7}\)
=.= hok tốt!!