K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 1

Lời giải:
$T = \frac{1}{7^2}+\frac{2}{7^3}+\frac{3}{7^4}+....+\frac{99}{7^{100}}$
$7T = \frac{1}{7}+\frac{2}{7^2}+\frac{3}{7^3}+....+\frac{99}{7^{99}}$

$\Rightarrow 6T=7T-T = \frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{99}}-\frac{99}{7^{100}}$
$42T = 1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{98}}-\frac{99}{7^{99}}$

$\Rightarrow 42T-6T = 1-\frac{100}{7^{99}}+\frac{99}{7^{100}}$

$\Rightarrow 36T = 1-\frac{601}{7^{100}}< 1$

$\Rightarrow T< \frac{1}{36}$

3 tháng 8 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

\(B=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{107.111}\)

\(B=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{107}-\frac{1}{111}\)

\(B=\frac{1}{3}-\frac{1}{111}\)

\(B=\frac{12}{37}\)

\(C=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)

\(C=7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)

\(C=7\left(\frac{1}{10}-\frac{1}{70}\right)\)

\(C=7.\frac{3}{35}\)

\(C=\frac{3}{5}\)

3 tháng 8 2017

Ta có:

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)

\(B=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{107.111}\)

\(B=4.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\right)\)

\(B=4.\left(\frac{1}{3}-\frac{1}{111}\right)=4.\frac{12}{37}=\frac{48}{37}\)

\(C=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)

\(C=7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)

\(C=7.\left(\frac{1}{10}-\frac{1}{70}\right)=7.\frac{3}{35}=\frac{3}{5}\)

9 tháng 8 2016

C=\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

  =\(\frac{1}{100}-\left(\frac{1}{2.1}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

  =\(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

  =\(\frac{1}{100}-\left(1-\frac{1}{100}\right)\)

  =\(\frac{1}{100}-\frac{99}{100}\)

  =\(\frac{-98}{100}=\frac{-49}{50}\)

10 tháng 8 2016

C=1/100 -1/100.99 -1/99.98 -1/98.97-......- 1/3.2 -1/2.1 
= 1/100 - (1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1) 
Đặt A = 1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1 => C = 1/100 - A 
Dễ thấy 1/2.1 = 1/1 - 1/2 
1/3.2 = 1/2 - 1/3 
..................... 
1/99.98 = 1/98 - 1/99 
1/100.99 = 1/99 - 1/100 
=> cộng từng vế với vế ta

AH
Akai Haruma
Giáo viên
13 tháng 1

Lời giải:
$T = \frac{1}{7^2}+\frac{2}{7^3}+\frac{3}{7^4}+....+\frac{99}{7^{100}}$
$7T = \frac{1}{7}+\frac{2}{7^2}+\frac{3}{7^3}+....+\frac{99}{7^{99}}$

$\Rightarrow 6T=7T-T = \frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{99}}-\frac{99}{7^{100}}$
$42T = 1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{98}}-\frac{99}{7^{99}}$

$\Rightarrow 42T-6T = 1-\frac{100}{7^{99}}+\frac{99}{7^{100}}$

$\Rightarrow 36T = 1-\frac{601}{7^{100}}< 1$

$\Rightarrow T< \frac{1}{36}$

9 tháng 7 2023

\(A=1-2+3-4+5-6+7-8+...+99-100\)

\(A=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)

\(A=\left(-1\right).50\)

\(A=-50\)

\(B=1+3-5-7+9+11-...-397-399\)

\(B=1-2+2-2+2-...+2-2-399\)

\(B=1-399\)

\(B=-398\)

\(C=1-2-3+4+5-6-7+...+97-98-99+100\)

\(C=-1+1-1+1-...-1+1\)

\(C=0\)

\(D=2^{2024}-2^{2023}-...-1\)

\(D=2^{2024}-\left(2^0+2^1+2^2+...2^{2023}\right)\)

\(D=2^{2024}-\left(\dfrac{2^{2024}-1}{2-1}\right)\)

\(D=2^{2024}-\left(2^{2024}-1\right)\)

\(D=2^{2024}-2^{2024}+1\)

\(D=1\)

9 tháng 7 2023

A = 1 - 2 + 3  - 4 + 5 - 6 + 7 - 8 +...+ 99 - 100

A = (1 - 2) + ( 3 - 4) + ( 5- 6) +....+(99 - 100)

Xét dãy số 1; 3; 5;...;99

Dãy số trên là dãy số cách đều có khoảng cách là: 3 - 1 = 2

Dãy số trên có số số hạng là: (99 - 1) : 2 + 1 = 50 (số)

Vậy tổng A có 50 nhóm, mỗi nhóm có giá trị là: 1- 2 = -1

A =  - 1\(\times\)50 = -50

b, 

B = 1 + 3 - 5 - 7 + 9 + 11-...- 397 - 399

B = ( 1 + 3 - 5 - 7) + ( 9 + 11 - 13 - 15) + ...+( 393 + 395 - 397 - 399)

B = -8 + (-8) +...+ (-8)

Xét dãy số 1; 9; ...;393

Dãy số trên là dãy số cách đều có khoảng cách là: 9-1 = 8

Dãy số trên có số số hạng là: ( 393 - 1): 8 + 1 = 50 (số hạng)

Tổng B có 50 nhóm mỗi nhóm có giá trị là -8

B = -8 \(\times\) 50 = - 400

c, 

C = 1 - 2 - 3 + 4 + 5 -  6 +...+ 97 - 98 - 99 +100

C = ( 1 - 2 - 3 + 4) + ( 5 - 6 - 7+ 8) +...+ ( 97 - 98 - 99 + 100)

C = 0 + 0 + 0 +...+0

C = 0

d,   D =           22024 - 22023- ... +2 - 1

    2D = 22005- 22004 + 22003+...- 2

2D + D = 22005 - 1

 3D      = 22005 - 1

   D      = (22005 - 1): 3

5 tháng 2 2022

Ta có \(63,1.2-21,3.6=0,9.7.10.1,2-21.3,6\)

\(=6,3.1,2-21.3,6\)

\(=0,9.7.4.3-7.3.0,9.4\)

\(=6,3.1,2-6,3.1,2\)

\(=0\)

\(\Rightarrow\dfrac{\left(1+2+......+100\right).\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+.....+99-100}=\dfrac{\left(1+2+.....+100\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)0}{1-2+3-4+......+99-100}=0\)