Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)
Bài 1: Tính nhanh
a) Ta có: \(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=100+99+98+97+...+2+1\)
\(=\left(100+1\right)+\left(99+2\right)+\left(98+3\right)+\left(97+4\right)+...+\left(50+51\right)\)
\(=101\cdot50=5050\)
b) Ta có: \(B=\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(\Leftrightarrow4\cdot B=24\cdot\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(\Leftrightarrow4\cdot B=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(\Leftrightarrow4\cdot B=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(\Leftrightarrow4\cdot B=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(\Leftrightarrow4\cdot B=\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(\Leftrightarrow4\cdot B=5^{32}-1\)
hay \(B=\frac{5^{32}-1}{4}\)
Ta có 1 + 2 + 3 + ... + 100 = 5050
Ta có 15 + 25 + ... + 1005
= (15 + 1005) + (25 + 995) + ... + (505 + 515)
= 101.A + 101.B + ... + 101.C
= 101(A + B + ... + C) \(⋮\)101 (1)
Lại có 15 + 25 + .. + 1005
= (15 + 995) + (25 + 985) + .... + (495 + 515) + 505 +1005
= 100.A + 100.B + .... + 100.C + 505 + 1005
= 50.(2A + 2B + ... + 2C + 504 + 504.25) \(⋮\)50 (2)
Từ (1) và (2) => 15 + 25 + .. + 1005 \(⋮\)50.101 = 5050
<=> 15 + 25 + .. + 1005 \(⋮\)1 + 2 + 3 + ... + 100
a) 2 +4+6+8+...+2018
= ( 2018+2) x 1009 : 2
= 2020 x 1009 : 2
= 1009 x (2020:2)
= 1009 x 1010
= 1 019 090
b) S = 10 + 102 + 103 + ...+ 10100
=> 10.S = 102 + 103 + 104 +...+ 10101
=> 10.S - S = 10101-10
9.S=10101- 10
\(\Rightarrow S=\frac{10^{101}-10}{9}\)
c) \(S=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(\Rightarrow5S=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(5S-S=1-\frac{1}{5^{100}}\)
\(4S=1-\frac{1}{5^{100}}\)
\(S=\frac{1-\frac{1}{5^{100}}}{4}\)
e cx ko nx, e ms hok lp 7 thoy, sang hè ms lp 8! e sr cj nhiều nha!
d) \(S=\frac{1!}{3!}+\frac{2!}{4!}+\frac{3!}{5!}+...+\frac{2018!}{2020!}\)
\(S=\frac{1}{1.2.3}+\frac{1.2}{1.2.3.4}+\frac{1.2.3}{1.2.3.4.5}+...+\frac{1.2.3...2018}{1.2.3...2020}\)
\(S=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2019.2020}\)
\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(S=\frac{1}{2}-\frac{1}{2020}\)
\(S=\frac{1009}{2020}\)
a) pt a <=> 3x+1=0 hoặc x-2000=0 hoặc 3x+6000=0
<=> x=-1/3 hoặc x=2000 hoặc x=-2000
a;b;c có những câu tương tự rồi, ko giải lại nx
d) \(S=\frac{1!}{3!}+\frac{2!}{4!}+...+\frac{2018!}{2020!}\)
\(S=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2019.2020}\)
\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(S=\frac{1}{2}-\frac{1}{2020}\)
b tự làm nốt nha
\(A=-\dfrac{1}{5}+\dfrac{1}{5^2}-\dfrac{1}{5^3}+...+\dfrac{1}{5^{100}}\)
\(\Rightarrow5A=-1+\dfrac{1}{5}-\dfrac{1}{5^2}+...+\dfrac{1}{5^{99}}\)
\(\Rightarrow5A+A=-1+\dfrac{1}{5^{100}}\)
\(\Rightarrow6A=-\dfrac{5^{100}+1}{5^{100}}\)
\(\Rightarrow A=-\dfrac{5^{100}+1}{5^{100}\times6}\)