K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2022

\(A=-\dfrac{1}{5}+\dfrac{1}{5^2}-\dfrac{1}{5^3}+...+\dfrac{1}{5^{100}}\)

\(\Rightarrow5A=-1+\dfrac{1}{5}-\dfrac{1}{5^2}+...+\dfrac{1}{5^{99}}\)

\(\Rightarrow5A+A=-1+\dfrac{1}{5^{100}}\)

\(\Rightarrow6A=-\dfrac{5^{100}+1}{5^{100}}\)

\(\Rightarrow A=-\dfrac{5^{100}+1}{5^{100}\times6}\)

9 tháng 10 2015

Bạn tự hỏi rồi từ trả lời ! Bạn xem đầu bạn có nóng không ?

9 tháng 10 2015

olm ko cho tự hỏi tự trả lời đâu nhoa.

a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)

31 tháng 8 2020

Giúp mik vs ạ.Mik đag cần

Bài 1: Tính nhanh

a) Ta có: \(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(=100+99+98+97+...+2+1\)

\(=\left(100+1\right)+\left(99+2\right)+\left(98+3\right)+\left(97+4\right)+...+\left(50+51\right)\)

\(=101\cdot50=5050\)

b) Ta có: \(B=\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(\Leftrightarrow4\cdot B=24\cdot\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(\Leftrightarrow4\cdot B=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(\Leftrightarrow4\cdot B=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(\Leftrightarrow4\cdot B=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(\Leftrightarrow4\cdot B=\left(5^{16}-1\right)\left(5^{16}+1\right)\)

\(\Leftrightarrow4\cdot B=5^{32}-1\)

hay \(B=\frac{5^{32}-1}{4}\)

2 tháng 7 2021

Ta có 1 + 2 + 3 + ... + 100 = 5050 

Ta có 15 + 25 + ... + 1005

= (15 + 1005) + (25 + 995) + ... + (505 + 515)

= 101.A + 101.B + ... + 101.C

= 101(A + B + ... + C) \(⋮\)101 (1)

Lại có 15 + 25 + .. + 1005

= (15 + 995) + (25 + 985) + .... + (495 + 515) + 505  +1005

= 100.A + 100.B + .... + 100.C + 505 + 1005

= 50.(2A + 2B + ... + 2C + 504 + 504.25\(⋮\)50 (2)

Từ (1) và (2) => 15 + 25 + .. + 1005 \(⋮\)50.101 = 5050

<=>  15 + 25 + .. + 1005 \(⋮\)1 + 2 + 3 + ... + 100

24 tháng 6 2018

a) 2 +4+6+8+...+2018

= ( 2018+2) x 1009 : 2

= 2020 x 1009 : 2

= 1009 x (2020:2)

= 1009 x 1010

= 1 019 090

b) S = 10 + 102 + 103 + ...+ 10100

=> 10.S = 102 + 103 + 104 +...+ 10101

=> 10.S - S = 10101-10

9.S=10101- 10

\(\Rightarrow S=\frac{10^{101}-10}{9}\)

c) \(S=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)

\(\Rightarrow5S=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

\(5S-S=1-\frac{1}{5^{100}}\)

\(4S=1-\frac{1}{5^{100}}\)

\(S=\frac{1-\frac{1}{5^{100}}}{4}\)

e cx ko nx, e ms hok lp 7 thoy, sang hè ms lp 8! e sr cj nhiều nha!

24 tháng 6 2018

d) \(S=\frac{1!}{3!}+\frac{2!}{4!}+\frac{3!}{5!}+...+\frac{2018!}{2020!}\)

\(S=\frac{1}{1.2.3}+\frac{1.2}{1.2.3.4}+\frac{1.2.3}{1.2.3.4.5}+...+\frac{1.2.3...2018}{1.2.3...2020}\)

\(S=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2019.2020}\)

\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(S=\frac{1}{2}-\frac{1}{2020}\)

\(S=\frac{1009}{2020}\)

7 tháng 5 2017

a) pt a <=> 3x+1=0     hoặc        x-2000=0         hoặc      3x+6000=0

           <=> x=-1/3      hoặc        x=2000            hoặc      x=-2000

21 tháng 6 2018

a;b;c có những câu tương tự rồi, ko giải lại nx

d) \(S=\frac{1!}{3!}+\frac{2!}{4!}+...+\frac{2018!}{2020!}\)

\(S=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2019.2020}\)

\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(S=\frac{1}{2}-\frac{1}{2020}\)

b tự làm nốt nha