Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n+1\right).\left(2n+3\right)}\)
\(=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}\right)+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)+...+\frac{1}{2}\left(\frac{1}{2n+1}-\frac{1}{2n+3}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n+1}-\frac{1}{2n+3}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{2n+3}\right)\)
\(=\frac{1}{2}\cdot\frac{2n+2}{2n+3}\)
\(=\frac{2n+2}{4n+6}=\frac{2\left(n+1\right)}{2\left(2n+3\right)}=\frac{n+1}{2n+3}\)
\(\RightarrowĐPCM\)
a/ước chung là 3
b/ước chung là 1
mk chỉ làm mẫu 2 câu thôi còn bạn tự làm đi
a) \(A=1+3+5+7+...+199\)
Số lượng số hạng:
\(\left(199-1\right):2+1=100\) (số hạng)
Tổng A là:
\(\left(199+1\right)\cdot100:2=10000\)
b) \(B=1+3+5+...+\left(2n-1\right)\)
Số lượng số hạng:
\(\left[\left(2n-1\right)-1\right]:2+1\)
\(=\left(2n-1-1\right):2+1\)
\(=2\left(n-1\right):2+1\)
\(=n-1+1\)
\(=n\)
Tổng B là:
\(\left[\left(2n-1\right)+1\right]\cdot n:2\)
\(=\left(2n-1+1\right)\cdot n:2\)
\(=2n\cdot n:2\)
\(=n^2\)
a: Số số hạng là (199-1)/2+1=100(số)
Tổng là (199+1)*100/2=100^2=10000
b: Số số hạng là (2n-1-1):2+1=n(số)
Tổng là (2n-1+1)*n/2=2n^2/2=n^2
Áp dụng công thức tính dãy số : [( số cuối - số đầu ) : khoảng cách + 1] x ( số cuối + số đầu) : 2
Ta có :
a) 1 + 2 + 3 + 4 + ..... + n = [ ( n - 1) : 1 + 1 ] x ( n + 1) : 2 = n x ( n + 1) : 2
a: Số số hạng là n-1+1=n số
Tổng là n(n+1)/2
b: SỐ số hạng là \(\dfrac{2n-2}{2}+1=n\left(số\right)\)
Tổng là \(\left(2n+2\right)\cdot\dfrac{n}{2}=n\left(n+1\right)\)
c: Số số hạng là (2n+1-1):2+1=n+1(số)
Tổng là \(\dfrac{\left(2n+1+1\right)\cdot\left(n+1\right)}{2}=\left(n+1\right)^2\)
\(1,\\ a,Gọi.ƯCLN\left(n,n+1\right)=d\\ \Rightarrow n⋮d;n+1⋮d\\ \Rightarrow n+1-n⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)
Vậy \(ƯCLN\left(n,n+1\right)=1\)
Áp dụng công thức tính dãy số ta có :
\(\frac{\left\{\left[\left(2n-1\right)-1\right]:2+1\right\}.\left[\left(2n+1\right)+1\right]}{2}=225\)
\(\left\{\frac{2n-2}{2}+1\right\}.\left(2n+2\right)=450\)
\(\left(\frac{2n-2+2}{2}\right)\left(2n+2\right)=450\)
\(\frac{n}{2}\left(2n+2\right)=450\)
\(\frac{2n^2}{2}+\frac{2n}{2}=450\)
\(n^2+n=450\)
\(n\left(n+1\right)=450\)
=> n không có giá trị
éo hiểu cách trả lời của bạn