Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết lại (3x−4)2(3x-4)2 như (3x−4)(3x−4)(3x-4)(3x-4) .
(3x−4)(3x−4)(3x-4)(3x-4)
Mở rộng (3x−4)(3x−4)(3x-4)(3x-4) sử dụng phương pháp FOIL .
Chạm để có thêm bước ...
3x(3x)+3x⋅−4−4(3x)−4⋅−43x(3x)+3x⋅-4-4(3x)-4⋅-4
Đơn giản và kết hợp như các thuật ngữ .
Chạm để có thêm bước ...
9x2−24x+16
a)
\((6x+5)^2(3x+2)(x+1)-35\)
\(=(36x^2+60x+25)(3x^2+5x+2)-35\)
\(=[12(3x^2+5x+2)+1](3x^2+5x+2)-35\)
\(=(12a+1)a-35=12a^2+a-35\) (đặt \(3x^2+5x+2=a)\)
\(=4a(3a-5)+7(3a-5)=(4a+7)(3a-5)\)
\(=(12x^2+20x+15)(9x^2+15x+1)\)
b)
\(8(4x+1)(2x-3)(4x-3)(x+1)-130\)
\(=8[(4x+1)(4x-3)][(2x-3)(x+1)]-130\)
\(=8(16x^2-8x-3)(2x^2-x-3)-130\)
\(=8(8a+21)a-130\) (Đặt \(2x^2-x-3=a\) )
\(=64a^2+168a-130=2(8a-5)(4a+13)\)
\(=2(8x^2-4x+1)(16x^2-8x-29)\)
c)
\((4x+1)(12x-1)(3x+2)(x+1)-4\)
\(=[(4x+1)(3x+2)][(12x-1)(x+1)]-4\)
\(=(12x^2+11x+2)(12x^2+11x-1)-4\)
\(=(a+2)(a-1)-4\) (đặt \(a=12x^2+11x\) )
\(=a^2+a-6=(a-2)(a+3)\)
\(=(12x^2+11x-2)(12x^2+11x+3)\)
d)
\((x+2)(x+3)^2(x+4)-12\)
\(=[(x+2)(x+4)](x+3)^2-12\)
\(=(x^2+6x+8)(x^2+6x+9)-12\)
\(=a(a+1)-12\) (Đặt \(x^2+6x+8=a\) )
\(=a^2+a-12=(a-3)(a+4)=(x^2+6x+5)(x^2+6x+12)\)
\(=(x+1)(x+5)(x^2+6x+12)\)
a/ \(12x^2+5x-12y^2+12y-10xy-3.\)
\(=12x^2+9x-4x-12y^2+6y+6y-18xy+8xy-3.\)
\(=\left(12x^2-18xy+9x\right)-\left(4x-6y+3\right)+\left(8xy-12y^2+6y\right)\)
\(=3x\left(4x-6y+3\right)-\left(4x-6y+3\right)+2y\left(4x-6y+3\right)\)
\(=\left(4x-6y+3\right)\left(3x-1+2y\right)\)
2/ \(2x^2+y^2+3x-2y-3xy+1\)
\(=\left(y^2-2y+1\right)+\left(3x-3xy\right)+2x^2\)
\(=\left(y-1\right)^2+3x\left(1-y\right)+2x^2\)
\(=\left(y-1\right)^2-3x\left(y-1\right)+2x^2\)
ta có x2+5x+4
=x2+x+4x+4
=(x2+x)+(4x+4)
=x(x+1)+4(x+1)
=(x+1)(x+4)
tương tự ta đc
x2+11x+28=(x+4)(x+7)
x2+17x+70=(x+7)(x+10)
x2+23x+130=(x+10)(x+13)
=>\(\dfrac{1}{\left(x+1\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+7\right)}+\dfrac{1}{\left(x+7\right)\left(x+10\right)}+\dfrac{1}{\left(x+10\right)\left(x+13\right)}=\dfrac{4}{13}\)\(\dfrac{3}{\left(x+1\right)\left(x+4\right)}+\dfrac{3}{\left(x+4\right)\left(x+7\right)}+\dfrac{3}{\left(x+7\right)\left(x+10\right)}+\dfrac{3}{\left(x+10\right)\left(x+11\right)}=\dfrac{4}{13}\)=>\(\dfrac{1}{x+1}-\dfrac{1}{x+4}+\dfrac{1}{x+4}+....+\dfrac{1}{x+13}=\dfrac{4}{13}\)
=>\(\dfrac{1}{x+1}-\dfrac{1}{x+13}=\dfrac{4}{13}\)
=>\(\dfrac{13\left(x+13\right)}{13\left(x+1\right)\left(x+13\right)}-\dfrac{13\left(x+1\right)}{13\left(x+1\right)\left(x+13\right)}=\dfrac{4\left(x+1\right)\left(x+13\right)}{13\left(x+1\right)\left(x+13\right)}\)
=> 13(x+13)-13(x+1)=4(x+1)(x+13)
=> 13[(x+13)-(x+1)]=(4x+4)(x+13)
=>13(x+13-x-1)=4x2+52x+4x+52
=13.12=4x2+56x+52
=>4x2+56x+52=156
=>4x2+56x-104=0
\(\left(3x+4\right)^2+\left(5-3x\right)^2+2.\left(3x+4\right)\left(5-3x\right)\\ =\left[\left(3x+4\right)+\left(5-3x\right)\right]^2\\ =\left(3x+4+5-3x\right)^2\\ =9^2=81\)