Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{18}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{20}\)
=1-1/20
=19/20
\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{19\cdot20}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
\(=1-\dfrac{1}{20}=\dfrac{19}{20}\)
\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+....+\dfrac{1}{19\cdot20}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{20}\)
\(A=1-\dfrac{1}{20}\)
\(A=\dfrac{19}{20}\)
a) Đặt A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32
A = 1/2 + 1/22 + 1/23 + 1/24 + 1/25
2A = 2(1/2 + 22 + 1/23 + 1/24 + 1/25)
2A = 1 + 1/2 + 1/22 + 1/23 + 1/24
2A - A = (1 + 1/2 + 1/22 + 1/23 + 1/24) - (1/2 + 1/22 + 1/23 + 1/24 + 1/25)
A = 1 - 1/25
A = 31/32
b) 2/1.2 + 2/2.3 + 2/3.4 + ... + 2/18 . 19 + 2/19.20
= 2(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/18.19 + 1/19.20)
= 2.(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/18 - 1/19 + 1/19 - 1/20)
= 2. (1 - 1/20)
= 2.19/20
= 19/10
1/2.3 + 1/3.4 + 1/4.5 + ... + 1/19.20
= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/19 - 1/20
= 1/2 - 1/20
= 9/20
k đii
1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/19 - 1/20
1/2 - 1/20
9/20
.3-2/2.3 + 4-3/3.4 + 5-4/4.5 + 6-5/5.6 +...+ 20-19/19.20=18/x
1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 +...+ 1/19 - 1/20=18/x
1/2 - 1/20=18/x
10/20 - 1/20=18/x
9/20=18/x
18/40=18/x
=>x=40
Vậy x=40
1.a)x.x=4/9
Ta có:2/3.2/3=4/9
Vậy x= 4/9
b)x.7,99=7,99
x=7,99:7,99
x=1
2.a)đặt tên biểu thức là A.
A=1/2.1/4.1/8.1/16.1/32
2.A=1+1/2+1/4+1/8+1/16
2.A-A=(1+1/2+1/4+1/8+1/16)-(1/2+1/4+1/8+1/16+1/32)
A=1-1/32=31/32.
b)đặt tên biểu thức là S.
S=2/1.2+2/2.3+2/3.4+...+2/18.19+2/19.20
S=2.(1/1.2+1/2.3+1/3.4+...+1/18.19+1/19.20)
S=2.(1/1-1/2+1/2-1/3+1/3-1/4+...+1/18-1/19+1/19-1/20)
S=2.(1/1-1/20)
S=2.19/20
S=19/10.
Chúc bạn học giỏi nha!!!
k cho mình nha!!!
Đặt \(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{18.19}+\frac{2}{19.20}\)
\(A=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(A=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\right)\)
\(A=2\left(1-\frac{1}{20}\right)\)
\(A=2.\frac{19}{20}=\frac{19}{10}\)
Vậy ...
=2.(\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+......+\(\frac{1}{19.20}\))
=2.( 1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+..........+\(\frac{1}{19}\)-\(\frac{1}{20}\))
=2.(1-\(\frac{1}{20}\))
=2.\(\frac{19}{20}\)
= \(\frac{19}{10}\)
Xin lỗi máy tớ chỉ có cách viết phân số thế này / thông cảm
Ta có : A= 1/1 -1/2 + 1/2 -1/3 + 1/3 - 1/4 + 1/4 -1/5 +... + 1/19 - 1/20
=> A= 1/1 - 1/20
=> A = 19/20
Vậy A = 19/20
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{19}-\dfrac{1}{20}=\dfrac{1}{3}-\dfrac{1}{20}=\dfrac{17}{60}< \dfrac{1}{2}\)
\(\dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{19.20}< \dfrac{1}{2}\)
=> \(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{19}-\dfrac{1}{20}< \dfrac{1}{2}\)
=> \(\dfrac{1}{3}-\dfrac{1}{20}< \dfrac{1}{2}\)
\(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\cdot\cdot\cdot+\dfrac{1}{18\cdot19}+\dfrac{1}{19\cdot20}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\cdot\cdot\cdot+\dfrac{1}{18}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{20}\)
\(=\dfrac{1}{2}-\dfrac{1}{20}\)
\(=\dfrac{9}{20}\)
#\(Urushi\)☕
Công thức:
\(\dfrac{a}{n\left(n+a\right)}=\dfrac{1}{n}-\dfrac{1}{n+a}\)