Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{x}.\)
\(A=1+\frac{1}{2}+\frac{1}{2.2}+\frac{1}{2.2.2}+...+\frac{1}{x}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{2.2}+...+\frac{1}{x:2}\)
\(\Rightarrow2A-A=2-\frac{1}{x}\)
\(A=2-\frac{1}{x}=\frac{4095}{2048}\)
=> 1/x = 1/2048
=> x = 2048 ( 2048 = 211 )
\(2A=2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{2}{x}\)
=> \(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{2}{x}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{2}{x}+\frac{1}{x}\right)\)
=> \(A=2-\frac{1}{x}\)
Giải phương trình:
\(2-\frac{1}{x}=\frac{4095}{2048}\)
\(\frac{1}{x}=2-\frac{4095}{2048}\)
\(\frac{1}{x}=\frac{1}{2048}\)
x=2048
`@` `\text {Ans}`
`\downarrow`
`a)`
`13/50 + 9% + 41/100 + 0,24`
`= 0,26 + 0,09 + 0,41 + 0,24`
`= (0,26 + 0,24) + (0,09 + 0,41)`
`= 0,5 + 0,5`
`= 1`
`b)`
`2018 \times 2020 - 1/2017 + 2018 \times 2019`
`= 2018 \times (2020 + 2019) - 1/2017`
`= 2018 \times 4039 - 1/2017`
`= 8150702`
`c)`
`1/2 + 1/6 + 1/12 + 1/20 +1/30 +1/42`
`=`\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}\)
`=`\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{6}-\dfrac{1}{7}\)
`=`\(1-\dfrac{1}{7}\)
`= 6/7`
\(a,\dfrac{13}{50}+9\%+\dfrac{41}{100}+0,24\\ 0,26+0,09+0,41+0,24\\ =\left(0,26+0,24\right)+\left(0,09+0,41\right)\\ =0,5+0,5\\ =1\\ b,2018\times2020-\dfrac{1}{2017}+2018\times2019\\ =2018\times\left(2020+2019\right)-\dfrac{1}{2017}\\ =2018\times4039-\dfrac{1}{2017}\\ =3150702-\dfrac{1}{2017}\\ c,\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\\ =1-\dfrac{1}{2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}.........+\dfrac{1}{6}-\dfrac{1}{7}\\ =1-\dfrac{1}{7}\\ =\dfrac{6}{7}\)
a: 7p28s*3=21p84s=22p24s
b: 4h50p*7=28h350p=33h50p
c: 9 thế kỷ 12 năm*8=72 thế kỷ 96 năm
d: 5 ngày 20 giờ*6=30 ngày 120h
=32 ngày
e: 14 ngày 6h:9
=342h:9
=38h
f: 25,2h:3=8,4h
g: 32p8s:4=8p2s
h: 42h56p:7=6h8'
a) \(\frac{51}{3}-\frac{22}{3}=\frac{51-22}{3}=\frac{29}{3}\)
b) \(\frac{5}{12}+\frac{5}{6}-\frac{3}{4}=\frac{5}{12}+\frac{10}{12}-\frac{9}{12}=\frac{5+10-9}{12}=\frac{6}{12}=\frac{1}{2}\)
c) \(1-\left(\frac{1}{5}+\frac{1}{2}\right)=\frac{10}{10}-\frac{2}{10}-\frac{5}{10}=\frac{10-5-2}{10}=\frac{3}{10}\)
d) \(\frac{111}{4}-\left(\frac{25}{7}+\frac{51}{4}\right)=\frac{777}{28}-\frac{60}{28}-\frac{357}{28}=\frac{360}{28}=\frac{90}{7}\)
e) \(\left(\frac{85}{11}+\frac{35}{7}\right)-\frac{35}{11}=\left(\frac{85}{11}-\frac{35}{11}\right)+\frac{35}{7}=\frac{50}{11}-\frac{35}{7}=\frac{350}{77}-\frac{385}{77}=-\frac{35}{77}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{x\left(x+1\right)}=\frac{200}{201}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{x\left(x+1\right)}=\frac{200}{201}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{200}{201}\)
\(1-\frac{1}{x+1}=\frac{200}{201}\)
=> \(\frac{1}{x+1}=1-\frac{200}{201}=\frac{1}{201}\)
=> x + 1 = 201
=> x = 201 - 1
=> x = 200