K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2019

\(\frac{\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2014}}{-\frac{2013}{1}-\frac{2012}{2}-\frac{2011}{3}-...-\frac{1}{2013}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}{-\left(2013+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}\right)}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2014}}{-\left(\frac{2014}{2013}+\frac{2014}{2}+\frac{2014}{3}+....+\frac{2014}{2013}\right)}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2014}}{-2014\left(\frac{1}{2014}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2013}\right)}\)

\(=-\frac{1}{2014}\)

30 tháng 7 2018

B=\(\left[\left(\frac{1}{3}+\frac{1}{4}\right)x\frac{12}{19}+\frac{12}{19}\right]:\frac{4}{5}-\frac{1}{4}+2012\)

B=\(\left(\frac{7}{12}x\frac{12}{19}+\frac{12}{19}\right):\frac{4}{5}-\frac{1}{4}+2012\)

B=\(\left(\frac{7}{19}+\frac{12}{19}\right):\frac{4}{5}-\frac{1}{4}+2012\)

B=\(\frac{5}{4}-\frac{1}{4}+2012\)

B=1+2012

B=2013

30 tháng 7 2018

\(B=[\left(\frac{1}{3}+\frac{1}{4}\right)\times\frac{12}{19}+\frac{12}{19}]:\frac{4}{5}-\frac{1}{4}+2012\)

\(B=[\frac{7}{12}\times\frac{12}{19}+\frac{12}{19}]:\frac{4}{5}-\frac{1}{4}+2012\)

\(B=[\frac{7}{19}+\frac{12}{19}]:\frac{4}{5}-\frac{1}{4}+2012\)

\(B=1:\frac{4}{5}-\frac{1}{4}+2012\)

\(B=\frac{5}{4}-\frac{1}{4}+2012\)

\(B=1+2012\)

\(B=2013\)

1 tháng 8 2017

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+...+\left(\frac{1}{2013}+1\right)+1}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{2014.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}\)\

\(A=\frac{1}{2014}\)

4 tháng 8 2015

thử vào câu hỏi tương tự xem

25 tháng 4 2021

\(A=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}}{\dfrac{2013}{1}+\dfrac{2012}{2}+...+\dfrac{1}{2013}}\) 

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}}{\left(\dfrac{2012}{2}+1\right)+\left(\dfrac{2011}{3}+1\right)+...+\left(\dfrac{1}{2013}+1\right)+\dfrac{2014}{2014}}\) 

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}}{2014\left(\dfrac{1}{2}+\dfrac{1}{.3}+...+\dfrac{1}{2014}\right)}\) 

\(=\dfrac{1}{2014}\)

 

20 tháng 7 2016

\(\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+...+\frac{4}{2011.2012}\)

=\(4.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2011.2012}\right)\)

=\(4.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\right)\)

=\(4.\left(1-\frac{1}{2012}\right)\)

=\(4.\frac{2011}{2012}=\frac{2011}{503}=3\frac{502}{503}\)

Dấu . là dấu nhân nha.

Chúc bạn học tốt :]]