Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
A=1−3−5−7−9−...−97−99a)A=1−3−5−7−9−...−97−99
=1−(3+5+7+...+99)=1−(3+5+7+...+99)
=1−(99+3).[(99−3):2+1]2=1−(99+3).[(99−3):2+1]2
=1−2499=−2498=1−2499=−2498
b)B=1+3−5−7+9+...+97−99b)B=1+3−5−7+9+...+97−99
=(−8)+(−8)+(−8)+...+(−8)+97−99=(−8)+(−8)+(−8)+...+(−8)+97−99
=(−8).12+(−2)=−98=(−8).12+(−2)=−98
c)C=1−3−5+7+9−11−13+15+...+97−99c)C=1−3−5+7+9−11−13+15+...+97−99
=0+0+0+0+0+...+0−99=0+0+0+0+0+...+0−99
=−99
Số số hạng là
(99-3):4+1=25 => 12,5 cặp
Tổng của 1 cặp là
99+3=102
Tổng cả dãy số là
102x12.5=1275
Ủng hộ mik nha !
Số số hạng của dãy số là
( 99 - 3 ) : 4 + 1 = 25 ( số )
Tổng của dãy số là
( 99 + 3 ) x 25 : 2 =1275
ĐS : .....
tích mik nha Dương Hà An
\(A=\frac{4}{3}\cdot\frac{4}{7}+\frac{4}{7}\cdot\frac{4}{11}+\frac{4}{11}\cdot\frac{4}{15}+...+\frac{4}{95}\cdot\frac{4}{99}\)
\(A=\frac{16}{3\cdot7}+\frac{16}{7\cdot11}+\frac{16}{11\cdot15}+...+\frac{16}{95\cdot99}\)
\(A=4\cdot\left(\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{95\cdot99}\right)\)
\(A=4\cdot\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{99}\right)\)
\(A=4\cdot\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(A=4\cdot\frac{32}{99}\)
\(A=\frac{128}{99}\)
\(A=\frac{4}{3}\times\frac{4}{7}+\frac{4}{7}\times\frac{4}{11}+...+\frac{4}{95}\times\frac{4}{99}\)
\(=4\times\frac{4}{3.7}+4\times\frac{4}{7.11}+...+4\times\frac{4}{95.99}\)
\(=4\times\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{95.99}\right)\)
\(=4\times\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{91}-\frac{1}{95}+\frac{1}{95}-\frac{1}{99}\right)\)
\(=4\times\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=4\times\frac{32}{99}\)
\(=\frac{128}{99}\)
\(A=\frac{1}{1\cdot2}+\frac{2}{2\cdot4}+\frac{3}{4\cdot7}+\frac{4}{7\cdot11}+...+\frac{10}{46\cdot56}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{46}-\frac{1}{56}\)
\(A=1-\frac{1}{56}\)
\(A=\frac{55}{56}\)
\(B=\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{23\cdot27}\)
\(B=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{23}-\frac{1}{27}\)
\(B=\frac{1}{3}-\frac{1}{27}\)
\(B=\frac{8}{27}\)
\(C=\frac{4}{3\cdot6}+\frac{4}{6\cdot9}+\frac{4}{9\cdot12}+...+\frac{4}{99\cdot102}\)
\(C=\frac{4}{3}\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+\frac{3}{9\cdot12}+...+\frac{3}{99\cdot102}\right)\)
\(C=\frac{4}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{99}-\frac{1}{102}\right)\)
\(C=\frac{4}{3}\left(\frac{1}{3}-\frac{1}{102}\right)\)
\(C=\frac{4}{3}\cdot\frac{33}{102}\)
\(C=\frac{22}{51}\)