Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{4}{3}\cdot\frac{4}{7}+\frac{4}{7}\cdot\frac{4}{11}+\frac{4}{11}\cdot\frac{4}{15}+...+\frac{4}{95}\cdot\frac{4}{99}\)
\(A=\frac{16}{3\cdot7}+\frac{16}{7\cdot11}+\frac{16}{11\cdot15}+...+\frac{16}{95\cdot99}\)
\(A=4\cdot\left(\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{95\cdot99}\right)\)
\(A=4\cdot\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{99}\right)\)
\(A=4\cdot\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(A=4\cdot\frac{32}{99}\)
\(A=\frac{128}{99}\)
\(A=\frac{4}{3}\times\frac{4}{7}+\frac{4}{7}\times\frac{4}{11}+...+\frac{4}{95}\times\frac{4}{99}\)
\(=4\times\frac{4}{3.7}+4\times\frac{4}{7.11}+...+4\times\frac{4}{95.99}\)
\(=4\times\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{95.99}\right)\)
\(=4\times\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{91}-\frac{1}{95}+\frac{1}{95}-\frac{1}{99}\right)\)
\(=4\times\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=4\times\frac{32}{99}\)
\(=\frac{128}{99}\)
a,
A=1−3−5−7−9−...−97−99a)A=1−3−5−7−9−...−97−99
=1−(3+5+7+...+99)=1−(3+5+7+...+99)
=1−(99+3).[(99−3):2+1]2=1−(99+3).[(99−3):2+1]2
=1−2499=−2498=1−2499=−2498
b)B=1+3−5−7+9+...+97−99b)B=1+3−5−7+9+...+97−99
=(−8)+(−8)+(−8)+...+(−8)+97−99=(−8)+(−8)+(−8)+...+(−8)+97−99
=(−8).12+(−2)=−98=(−8).12+(−2)=−98
c)C=1−3−5+7+9−11−13+15+...+97−99c)C=1−3−5+7+9−11−13+15+...+97−99
=0+0+0+0+0+...+0−99=0+0+0+0+0+...+0−99
=−99
Số số hạng của dãy là :
( 99 - 3 ) :4 + 1 = 25 ( số )
Tổng của dãy là:
( 99 + 3 ) x 25 : 2 = 1275
Vậy A = 1275
Ta có: \(A=\frac{1}{3}.\frac{1}{7}+\frac{1}{7}.\frac{1}{11}+\frac{1}{11}.\frac{1}{15}+...+\frac{1}{95}.\frac{1}{99}\)
\(=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+.....+\frac{1}{95}-\frac{1}{99}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=\frac{1}{4}.\frac{32}{99}=\frac{8}{99}\)
\(4A=\frac{4}{3.7}+...+\frac{4}{95.99}\)
\(4A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{99}\)
\(4A=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
\(\Rightarrow A=\frac{8}{99}\)
\(A=\frac{1}{3.7}+\frac{1}{7.11}+...+\frac{1}{95.99}\)
\(A=\frac{1}{4}.\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{95.99}\right)\)
\(A=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{99}\right)\)
\(A=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(A=\frac{1}{4}.\frac{32}{99}\)
\(A=\frac{8}{99}\)
a)\(1-2+3-4+5-6+7-8+8-9+9-10\)
=\(\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+\left(7-8\right)+\left(8-9\right)+\left(9-10\right)\)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)
\(=\left(-1\right).6\)
\(=-6\)
b)\(1-2+3-4+...+99-100\)
\(=\left(1-2\right)+\left(3-4\right)+...+\left(99-100\right)\)}\(\left[\left(100-1\right):1+1\right]:2=50\)(cặp)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)} 50 số (-1)
\(=\left(-1\right).50\)
\(=-50\)
c)\(1-3+5-7+9-11+13-15\)
\(=\left(1-3\right)+\left(5-7\right)+\left(9-11\right)+\left(13-15\right)\)
\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+\left(-2\right)\)
\(=\left(-2\right).4\)
\(=-8\)
d)\(1-3+5-7+...-99+101\) (Đối với bài này, có vẻ đề sai, mình đã sửa lại rồi
\(=\left(1-3\right)+\left(5-7\right)+...+\left(97-99\right)+101\) } \(\left[\left(99-1\right):2+1\right]:2=25\)(cặp)
\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+...+\left(-2\right)\) } 25 số (-2)
\(=\left(-2\right).25\)
\(=-50\)
e)\(-1-2-3-4-...-99-100\)
\(=\left(-1\right)+\left(-2\right)+\left(-3\right)+...+\left(-99\right)+\left(-100\right)\)
\(=\left[\left(-1\right)+\left(-100\right)\right]+\left[\left(-2\right)+\left(-99\right)\right]+...+\left[\left(-51\right)+\left(-50\right)\right]\) } \(\left[\left(100-1\right):1+1\right]:2=50\)(cặp) (phần này của đề bài, không thay được như (-100) hoặc (-1))
\(=\left(-100\right)+\left(-100\right)+\left(-100\right)+...+\left(-100\right)\)} 50 số (-100)
\(=\left(-100\right).50\)
\(=-5000\)
Bằng 1275 đó bạn
Có công thức đàng hoàng nha