Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\dfrac{49}{100}}=\dfrac{7}{10}\\ \sqrt{\dfrac{144}{289}}=\dfrac{12}{17}\\ \dfrac{\sqrt{36}}{\sqrt{225}}=\dfrac{6}{15}=\dfrac{2}{5}\\ \dfrac{\sqrt{25}}{\sqrt{121}}=\dfrac{5}{11}\)
\(\sqrt{16}=4\)
\(\sqrt{49}=7\)
\(\sqrt{121}=11\)
\(\sqrt{169}=13\)
\(\sqrt{196}=14\)
trả lời
\(\sqrt{16}\);\(\sqrt{49}\);\(\sqrt{121}\);\(\sqrt{169}\);\(\sqrt{196}\)
chúc bn hok tốt
\(=2\frac{4}{\sqrt{5}}-5\frac{3}{5\sqrt[]{5}}-6\frac{11}{3\sqrt{5}}\)
\(=\frac{2.4.15-5.3.3-6.11.5}{15\sqrt{5}}\)
\(=\frac{-255}{15\sqrt{5}}=\frac{-17\sqrt{5}}{5}\)
Ta có: \(\sqrt{x^2-16}-\sqrt{x^2-36}=2\)
\(\Leftrightarrow\left(\sqrt{x^2-16}-\sqrt{x^2-36}\right)\cdot\left(\sqrt{x^2-16}+\sqrt{x^2-36}\right)=2\cdot\left(\sqrt{x^2-16}+\sqrt{x^2-36}\right)\)
\(\Leftrightarrow\left[\left(\sqrt{x^2-16}\right)^2-\left(\sqrt{x^2-36}\right)^2\right]=2\cdot\left(\sqrt{x^2-16}+\sqrt{x^2-36}\right)\)
\(\Leftrightarrow x^2-16-x^2+36=2\cdot\left(\sqrt{x^2-16}+\sqrt{x^2-36}\right)\)
\(\Leftrightarrow20=2\cdot\left(\sqrt{x^2-16}+\sqrt{x^2-36}\right)\)
\(\Leftrightarrow10=\sqrt{x^2-16}+\sqrt{x^2-36}\)
hay \(T=10\)
Vậy \(T=10\).
\(5\sqrt{4x-16}-\dfrac{7}{3}\sqrt{9x-36}=36-3\sqrt{x-4}\)
\(\Leftrightarrow10\sqrt{x-4}-7\sqrt{x-4}+3\sqrt{x-4}=36\)
\(\Leftrightarrow\sqrt{x-4}=6\)
\(\Leftrightarrow x-4=36\)
hay x=40
b:
ĐKXĐ: x>=4
\(5\sqrt{4x-16}-\dfrac{7}{3}\cdot\sqrt{9x-36}=36-3\sqrt{x-4}\)
=>\(5\cdot2\cdot\sqrt{x-4}-\dfrac{7}{3}\cdot3\cdot\sqrt{x-4}+3\sqrt{x-4}=36\)
=>\(6\sqrt{x-4}=36\)
=>\(\sqrt{x-4}=6\)
=>x-4=36
=>x=40
\(\sqrt{8,1}.\sqrt{250}\)
\(=\sqrt{81}.\sqrt{25}\)
\(=9.5\)
\(=45\)
\(\sqrt{2,5}.\sqrt{360}\)
\(=\sqrt{25}.\sqrt{36}\)
\(=5.6\)
\(=30\)
\(\sqrt{\frac{-49}{-121}}=\sqrt{\frac{49}{121}}\)
\(=\frac{\sqrt{49}}{\sqrt{121}}\)
\(=\frac{7}{11}\)
\(\sqrt{\frac{-36}{-169}}=\sqrt{\frac{36}{169}}\)
\(=\frac{\sqrt{36}}{\sqrt{169}}=\frac{6}{13}\)
\(3\sqrt{25}-\sqrt{36}-2\sqrt{16}=\sqrt{225}-\sqrt{36}-\sqrt{64}=15-6-8=1\)
11+4-6=9