Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 1/1.2 + 1/2.3 +...........+ 1/2016.2015
= 1 - 1/2 +1/2 - 1/3 + ............+1/2015 - 1/2016
= 1 - 1/2016
= 2015/2016
A=1/2015-1/2016+1/2014-1/2015+1/2013-1/2014+.............+1-1/2
A=1/2016+1
A=2017/2016
chúc học tốt
Đáp án :
A = 1/1.2 + ... + 1/2013.2014 + 1/2014.2015 + 1/2015.2016
= 1 + 1/2 - 1/2 + .... + 1/2013 - 1/2014 + 1/2014 - 1/2015 + 1/2015 - 1/2016
= 1 + 0 + .... + 0 + 0 + 0 - 1/2016
= 1 - 1/2016
= 2015/2016
Vậy A = 2015/2016
bai nay ban viet nguoc day so lai roi giai nhu binh thuong la duoc
\(\frac{1}{2016.2015}+\frac{1}{2015.2014}+...+\frac{1}{1.2}\)
\(=\frac{1}{1.2}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\)
\(=\frac{1}{1}-\frac{1}{2}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)
\(=\frac{1}{1}+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{2015}-\frac{1}{2015}\right)-\frac{1}{2016}\)
\(=\frac{1}{1}-\frac{1}{2016}=\frac{2015}{2016}\)
~ Hok tốt ~
=1/2016-1/2015+1/2015-1/2014+...+1-1/2
=1/2016-1/2
=-1007/2016
Bài 3 : Tính :
A = \(\frac{1}{2016.2015}+\frac{1}{2015.2014}+\frac{1}{2014.2013}+....+\frac{1}{1.2}\)
\(A=\frac{1}{2016.2015}+\frac{1}{2015.2014}+\frac{1}{2014.2013}+...+\frac{1}{1.2}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)
\(=1-\frac{1}{2016}=\frac{2015}{2016}\)
Vậy \(A=\frac{2015}{2016}\).
Mình viết ngược lại cho dễ làm xD
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2014\cdot2015}+\frac{1}{2015\cdot2016}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(A=\frac{1}{1}-\frac{1}{2016}\)
\(A=\frac{2015}{2016}\)
Sai thì bỏ quá :3
1. Ta có: \(\dfrac{a}{b}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\left(m\in Z\right)\)
\(B=\dfrac{2016^{2016}}{2016^{2016}-3}>\dfrac{2016^{2016}+2}{2016^{2016}-3+2}=\dfrac{2016^{2016}+2}{2016^{2016}-1}=A\)
Vậy A > B
2. \(\dfrac{1}{2016.2015}+\dfrac{1}{2015.2014}+\dfrac{1}{2014.2013}+...+\dfrac{1}{1.2}\)
= \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2014.2015}+\dfrac{1}{2015.2016}\)
= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\)
= \(1-\dfrac{1}{2016}\)
=\(\dfrac{2015}{2016}\)
\(\frac{1}{2}-\frac{1}{2016.2015}-\frac{1}{2015.2014}-...-\frac{1}{3.2}\)
\(=\frac{1}{2}-\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{2016}\right)\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{2016}\)
\(=\frac{1}{2016}\)
\(\frac{1}{2}-\frac{1}{2016.2015}-\frac{1}{2015.2014}-...-\frac{1}{3.2}\)
\(=\frac{1}{2}-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{2016}\right)\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{2016}\)
\(=0+\frac{1}{2016}=\frac{1}{2016}\)
5/4:1/4:(11/6-3/2)+1
5/4:1/4:1/3+1
5/4.4/1:1/3+1
5/4.4/1.3/1+1
5.1/3+1
5/3+1
5/3+1/1
5/3+3/3
8/3
\(125\%.\left(-\frac{1}{2}\right)^2:\left(1\frac{5}{6}-1,5\right)\)
\(=\frac{5}{4}.\left(-\frac{1}{2}\right)^2:\left(\frac{11}{6}-1,5\right)\)
\(=\frac{5}{4}.\frac{1}{4}:\left(\frac{11}{6}-\frac{3}{2}\right)\)
\(=\frac{5}{4}.\frac{1}{4}:\frac{1}{3}\)
\(=\frac{5}{4}:\frac{3}{4}=\frac{5}{3}\)
b, \(|\frac{2}{3}x-\frac{1}{2}|=\frac{5}{6}\)
\(\frac{2}{3}x-\frac{1}{2}=\frac{5}{6}\)hoặc\(-\frac{5}{6}\)
\(\frac{2}{3x}=\frac{5}{6}+\frac{1}{2}\)hoặc \(\frac{2}{3}x=-\frac{5}{6}+\frac{1}{2}\)
\(\frac{2}{3}x=\frac{4}{3}\)hoặc \(-\frac{1}{3}\)
\(x=\frac{4}{3}:\frac{2}{3}\)hoặc \(-\frac{1}{3}:\frac{2}{3}\)
\(x=2\)hoặc \(-\frac{1}{2}\)
Bài 2:
\(=\frac{2017}{2016}\)
Bài 3 :
O x y z t
a, trên cùng một nửa mặt phẳng bờ chứa tia Ox, tia Oz nằm giữa 2 tia còn lại . Vì \(\widehat{xOz}< \widehat{xOy}\left(100< 50\right)\)
b, Vì tia Oz nằm giữa 2 tia còn lại nên ta có :
\(\widehat{yOz}+\widehat{zOx}=\widehat{xOy}\)
\(\widehat{yOz}+50=100\)
\(\widehat{yOz}=100-50=50\)
Vậy tia Oz là tia phân giác của góc \(\widehat{xOy}\).Vì tia Oz nằm giữa 2 tia còn lại và 2 góc yOz và zOx bằng nhau = 50
c, Vì tia Ot là tia đối của Ox nên có số đo là 180 nên \(\Rightarrow\)\(\widehat{xOt}=180\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(=1-\frac{1}{2016}\)
\(=\frac{2015}{2016}\)
Phép tính trên có thể ghi ngược lại
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)
=\(1-\frac{1}{2016}\)
=\(\frac{2015}{2016}\)