K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

\(C=\dfrac{x+2}{\left|x\right|}\left(đk:\left|x\right|\ne0\right)\)

\(\left|x\right|\ge0\forall x\)

\(MAX_C\Rightarrow MNI_X\)

\(x\ne0\Rightarrow x=1\)

\(\Rightarrow MAX_C=\dfrac{1+2}{\left|1\right|}=3\)

a: \(A=\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\)

Dấu '=' xảy ra khi x=-1/6

b: \(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\le3\)

Dấu '=' xảy ra khi 4/9x-2/15=0

hay x=2/15:4/9=2/15x9/4=18/60=3/10

10 tháng 8 2017

Áp dụng BĐT:

\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:

\(A\ge\left|x+8-x\right|\)

\(A\ge8\)

Dấu "=" xảy ra khi:

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\8-x\ge0\Rightarrow x\le8\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\8-x< 0\Rightarrow x>8\end{matrix}\right.\end{matrix}\right.\)

Vậy xảy ra khi:

\(0\le x\le8\)

10 tháng 8 2017

Xài BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=8\)

Khi \(0\le x\le 8\)

16 tháng 7 2017

\(D=\dfrac{1}{\left|x-2\right|+3}\)

T a thấy : |x-2|+3 luôn lớn hơn hoặc bằng 3 với mọi x

=> \(\dfrac{1}{\left|x-2\right| +3}\) luôn nhỏ hơn hoặc bằng 1/3

Dấu bằng xảy ra <=> x-2=0 => x=2

Vậy GTLN của biểu thức D là 1/3 tại x=2

16 tháng 7 2017

Giải:

a) \(A=10-4\left|x-2\right|\)

\(\left|x-2\right|\ge0\)

\(\Leftrightarrow4\left|x-2\right|\ge0\)

\(\Leftrightarrow A=10-4\left|x-2\right|\le10\)

Vậy giá trị lớn nhất của biểu thức A là 10.

\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

b) \(B=x-\left|x\right|\)

\(\left|x\right|\ge0\)

\(\Leftrightarrow B=x-\left|x\right|\le0\)

Vậy giá trị lớn nhất của biểu thức B là 0.

\(\Leftrightarrow x=0\)

c) \(C=5-\left|2x-1\right|\)

\(\left|2x-1\right|\ge0\)

\(\Leftrightarrow C=5-\left|2x-1\right|\le5\)

Vậy giá trị lớn nhất của biểu thức C là 5.

\(\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)

d) \(D=\dfrac{1}{\left|x-2\right|+3}\)

Để biểu thức D đạt giá trị lớn nhất thì \(\left|x-2\right|+3\) phải đạt giá trị bé nhất

\(\left|x-2\right|\ge0\)

\(\Leftrightarrow\left|x-2\right|+3\ge3\)

\(\Rightarrow\) giá trị lớn nhất của \(\left|x-2\right|+3\) là 3

\(\Leftrightarrow D=\dfrac{1}{\left|x-2\right|+3}\le\dfrac{1}{3}\)

Vậy giá trị lớn nhất của biểu thức D là \(\dfrac{1}{3}\).

\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Chúc bạn học tốt!ok

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull

Câu 1 : (4d) Tính giá trị của biểu thức : \(a,A=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^3\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\) \(b,B=1+3^2+3^3+........+3^{2018}\) Câu 2 : (5d) a, Tìm x biết : \(\dfrac{x+1}{125}+\dfrac{x+2}{124}+\dfrac{x+3}{123}+\dfrac{x+4}{122}+\dfrac{x+146}{5}=0\) b, Tìm các cặp số nguyên x;y sao cho \(2018^{\left|\left|x^2-y\right|-8\right|+y^2-1}=1\) c, Tìm x;y;z biết rằng...
Đọc tiếp

Câu 1 : (4d) Tính giá trị của biểu thức :

\(a,A=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^3\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)

\(b,B=1+3^2+3^3+........+3^{2018}\)

Câu 2 : (5d)

a, Tìm x biết : \(\dfrac{x+1}{125}+\dfrac{x+2}{124}+\dfrac{x+3}{123}+\dfrac{x+4}{122}+\dfrac{x+146}{5}=0\)

b, Tìm các cặp số nguyên x;y sao cho \(2018^{\left|\left|x^2-y\right|-8\right|+y^2-1}=1\)

c, Tìm x;y;z biết rằng :\(xy=z;yz=4x;xz=9y\)

Câu 3 : (5d)

a, Biết xyz = 1. Tính tổng :\(A=\dfrac{5}{x+xy+1}+\dfrac{5}{y+yz+1}+\dfrac{5}{z+zx+1}\)

b, Cho \(\dfrac{a}{b}=\dfrac{c}{d}.CMR:\dfrac{3\cdot a^6+c^6}{3\cdot b^6+d^6}=\dfrac{\left(a+c\right)^6}{\left(b+d\right)^6}\left(b+d\ne0\right)\)

c, Cho :\(a;b;c>0;\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+d-c}{c}\)

Tính giá trị biểu thức :

\(P=\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)

Câu 4 : (4d)

a, Tìm giá trị nhỏ nhất của biểu thức :

\(A=\left|2016-x\right|+\left|2017-x\right|\left|2018-x\right|\)

b, Cho biểu thức : \(B=\dfrac{8-x}{x-3}\). Tìm các giá trị nguyên của x để B có giá trị nhỏ nhất.

Câu 5 : (2d) { Câu dễ nhất lun nè!!!!!}

Cho \(\dfrac{x}{y+z+t}=\dfrac{y}{x+z+t}=\dfrac{z}{x+y+t}=\dfrac{t}{x+y+z}\)

CMR : A là một số nguyên, biết :

\(A=\dfrac{x+y}{z+t}+\dfrac{y+z}{x+t}+\dfrac{z+t}{x+y}+\dfrac{x+t}{y+z}\)

Đây là đề thi để loại hsg ai làm đc làm hộ mk nhé, đặc biệt là câu 3a và câu 4b! Thanks nhìu !!!!!!!!!!

1
22 tháng 1 2018

3a) A=\(\dfrac{5}{x+xy+xyz}+\dfrac{5}{y+yz+1}+\dfrac{5xyz}{z+xz+xyz}\)

=\(\dfrac{5}{x\left(1+y+yz\right)}+\dfrac{5}{y+yz+1}+\dfrac{5xy}{1+x+xy}\)

=\(\dfrac{5}{x\left(1+y+zy\right)}+\dfrac{5x}{x\left(1+zy+y\right)}+\dfrac{5xy}{x\left(1+y+zy\right)}\)

=\(\dfrac{5+5x+5xy}{x\left(1+yz+y\right)}\)

=\(\dfrac{5x\left(yz+1+y\right)}{x\left(1+yz+y\right)}=5\)

4 tháng 2 2018

Thank you!!!!!yeu

31 tháng 10 2021

Ai lm đc câu nào thì giúp mk với , cảm ơn !!

31 tháng 10 2021

\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\\ A_{min}=\dfrac{1}{9}\Leftrightarrow x=\dfrac{3}{5}\\ B=\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\le\dfrac{2009}{2008}\\ B_{max}=\dfrac{2009}{2008}\Leftrightarrow x=\dfrac{3}{5}\\ C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\le1\dfrac{2}{3}\\ C_{max}=1\dfrac{2}{3}\Leftrightarrow\dfrac{1}{3}x=-4\Leftrightarrow x=-12\)