Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,10⋮n\Rightarrow n\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5\pm10\right\}.\)
\(\Rightarrow n\in\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
\(b,12⋮n-1\Rightarrow n-1\inƯ\left(12\right)\left\{\pm1;\pm2;\pm3\pm4;\pm6;\pm12\right\}\)
\(d,n+5⋮n+1\Rightarrow n+1+4⋮n+1.\)
mà \(n+1⋮n+1\Rightarrow4⋮n+1\)
\(\Rightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n+1 = 1 => n = 0
n + 1 = -1 => -2
..... tương tự vs 2; -2 ; 4 ; -4
\(e,n+7⋮n+2\Rightarrow n+2+5⋮n+2\)
mà \(n+2⋮n+2\Rightarrow5⋮n+2\)
\(\Rightarrow n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n+2 = 1 => n = -1
n + 2 = -1 => n = 3
.... tương tự vs 5 và -5
\(f,2n+5⋮2n+1\Rightarrow2n+1+4⋮2n+1\)
\(\Rightarrow2n+1⋮2n+1\Rightarrow4⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
...... tự lm
a) Điều kiện của A Chia hết cho 3 và chia hết cho 5 là x phải chia hết cho 5 và 3
b)
abc chia hết cho 27
⇒100a + 10b + c chia hết cho 27
⇒10(100a + 10b + c) chia hết cho 27
⇒1000a + 100b + 10c chia hết cho 27
⇒999a + (100b + 10c + a) chia hết cho 27
Mà 999a chia hết cho 27
Vậy 100b + 10c + a = bca chia hết cho 27
Câu b lm v ko ra đc, lm theo cách này ms ra
Gọi d là ước nguyên tố chung của 9n + 24 và 3n + 4
... như của bn
=> 12 chia hết cho d
Mà d nguyên tố nên d ϵ {3; 4}
+ Với d = 3 thì \(\begin{cases}9n+24⋮3\\3n++4⋮3\end{cases}\), vô lý vì \(3n+4⋮̸3\)
+ Với d = 4 thì \(\begin{cases}9n+24⋮4\\9n+12⋮4\end{cases}\)=> \(9n⋮4\)
Mà (9;4)=1 \(\Rightarrow n⋮4\)
=> n = 4.k (k ϵ N)
Vậy với \(n\ne4.k\left(k\in N\right)\) thì 9n + 24 và 3n + 4 là 2 số nguyên tố cùng nhau
\(12⋮n-2\)
=>\(n-2\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
=>\(n\in\left\{3;1;4;0;5;-1;6;-2;8;-4;14;-10\right\}\)
Bổ sung điều kiện (n \(\ne\) 2)