Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{420}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{20.21}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{20}-\frac{1}{21}\)
\(=1-\frac{1}{21}\)
\(=\frac{20}{21}\)
Cho A = 1 + 2 + 22 + 23 + ... + 22008
-> 2A = 2 + 22 + 23 + 24 +...+ 22009
-> 2A - A = ( 2 + 22 + 23 + 24 +...+ 22009 ) - ( 1 + 2 + 22 + 23 + ... + 22008 )
-> A = \(2^{2009}-1=-\left(1-2^{2009}\right)\)
S = \(\frac{-\left(1-2^{2009}\right)}{1-2^{2009}}\)=-1
Tìm x
a) | x - \(\dfrac{3}{2}\) | = \(\left(\dfrac{12}{13}+7\right)\) + \(\left(-8+\dfrac{1}{13}\right)\)
| x - \(\dfrac{3}{2}\) | = \(\dfrac{12}{13}+7-8+\dfrac{1}{13}\)
| x - \(\dfrac{3}{2}\) | = 1 + 7 - 8
=> | x - \(\dfrac{3}{2}\) | = 0
=> x - \(\dfrac{3}{2}\) = 0
=> x = \(\dfrac{3}{2}\)
b) ( \(\dfrac{3}{4}-\dfrac{1}{5}-\dfrac{1}{6}\) ) . \(\dfrac{1}{30}\) - | 3 . x - 3 | = 2
=> \(\dfrac{27}{4}\) . \(\dfrac{1}{30}\) - | 3x - 3 | = 2
=> \(\dfrac{9}{40}\) - | 3x - 3 | = 2
=> | 3x - 3 | = \(\dfrac{9}{40}\) - 2
=> | 3x - 3 | = \(\dfrac{-71}{40}\)
Th1 :
3x - 3 = \(\dfrac{-71}{40}\)
=> 3x = \(\dfrac{-71}{40}\) + 3
=> 3x = \(\dfrac{49}{40}\)
=> x = \(\dfrac{49}{40}\) : 3
=> x = \(\dfrac{49}{120}\)
TH2 :
3x - 3 = \(\dfrac{71}{40}\)
=> 3x = \(\dfrac{191}{40}\)
=> x = \(\dfrac{191}{120}\)
Vậy x = \(\dfrac{49}{120}\) hoặc \(\dfrac{191}{120}\)
a: =>|x-3/2|=12/13+1/13+7-8=0
=>x-3/2=0
hay x=3/2
b: \(\Leftrightarrow\dfrac{45-12-10}{60}\cdot\dfrac{1}{30}-\left|3x-3\right|=2\)
\(\Leftrightarrow\left|3x-3\right|=\dfrac{23}{60}\cdot\dfrac{1}{30}-2=-\dfrac{1777}{1800}\)(vô lý)
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{420}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{20.21}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{20}-\frac{1}{21}\)
\(A=1-\frac{1}{21}\)
\(A=\frac{20}{21}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{20.21}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{20}-\frac{1}{21}\)
\(A=1-\frac{1}{21}\)
\(A=\frac{20}{21}\)
Ko giúp thì thôi đi chỗ khác chơi đi giờ sửu nhi đi đầy đường hà!!!
Ta có: \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{420}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{20}-\dfrac{1}{21}\)
\(=1-\dfrac{1}{21}=\dfrac{20}{21}\)
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{420}\\ =\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{20.21}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-....-\dfrac{1}{21}+\dfrac{1}{21}\\ =1-\dfrac{1}{21}\\ =\dfrac{20}{21}\)