K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3B=3/1.4+3/4.7+3/7.10+...+3/100.103

3B=(4-1)/1.4+(7-4)/4.7+(10-7)/7.10+...+(103-100)/100.103

3B=1-1/4+1/4-1/7+1/7-1/10+...+1/100-1/103=1-1/103=102/103

B=102/(3.103)=34/103

HT

5 tháng 10 2021

\(\frac{1}{1.4}+\frac{1}{4.7}+.....+\frac{1}{100.103}\)

Đặt :

\(A=\frac{1}{1.4}+\frac{1}{4.7}+....+\frac{1}{100.103}\)

\(3A=\frac{3}{1.4}+\frac{3}{4.7}+.....+\frac{3}{100.103}\)

\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{100}-\frac{1}{103}\)

\(3A=1-\frac{1}{103}\)

\(3A=\frac{102}{103}\)

\(A=\frac{34}{103}\)

5 tháng 11 2017

\(\dfrac{1}{3}\)x(\(\dfrac{3}{1+4}\)+\(\dfrac{3}{4+7}\)+........+\(\dfrac{3}{101+103}\))

\(\dfrac{1}{3}\)x(\(\dfrac{1}{1}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{7}\)+.........+\(\dfrac{ }{ }\)\(\dfrac{1}{101}\)-\(\dfrac{1}{103}\))

\(\dfrac{1}{3}\)x(\(\dfrac{1}{1}\)-\(\dfrac{1}{103}\))

\(\dfrac{1}{3}\)x\(\dfrac{102}{103}\)

\(\dfrac{34}{103}\)

27 tháng 10 2017

\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{100.103}\)

\(=\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\)

\(=\dfrac{1}{1}-\dfrac{1}{103}\)

\(=\dfrac{102}{103}\)

2 tháng 10 2023

`#3107.101107`

1.

a)

`1/(1*4) + 1/(4*7) + 1/(7*10) + ... + 1/(100*103)`

`= 1/3 * (3/(1*4) + 3/(4*7) + 3/(7*10) + ... + 3/(100*103) )`

`= 1/3 * (1 - 1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)`

`= 1/3* (1 - 1/103)`

`= 1/3*102/103`

`= 34/103`

b)

`-1/3 + (-1/15) + (-1/35) + (-1/63) + ... + (-1/9999)`

`= - 1/3 - 1/15 - 1/35 - 1/63 - ... - 1/9999`

`= - (1/3 + 1/15 + 1/35 + ... + 1/9999)`

`= - (1/(1*3) + 1/(3*5) + 1/(5*7) + ... + 1/99*101)`

`= - 1/2 * (2/(1*3) + 2/(3*5) + 2/(5*7) + ... + 2/99*101)`

`= - 1/2* (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)`

`= -1/2 * (1 - 1/101)`

`= -1/2*100/101`

`= -50/101`

2.

`3/(1*4) + 3/(4*7) + ... + 3/(94*97) + 3/(97*100)`

`= 1 - 1/4 + 1/4 - 1/7 + ... + 1/94 - 1/97 + 1/97 - 1/100`

`= 1-1/100`

`= 99/100`

20 tháng 8 2023

\(B=\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{2021.2014}\)

\(\Rightarrow B=\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{2021}-\dfrac{1}{2014}\right)\)

\(\Rightarrow B=\dfrac{1}{3}.\left(1-\dfrac{1}{2014}\right)\)

\(\Rightarrow B=\dfrac{1}{3}.\dfrac{2013}{2014}=\dfrac{671}{2014}\)

HQ
Hà Quang Minh
Giáo viên
20 tháng 8 2023

\(B=\dfrac{1}{1\cdot4}+\dfrac{1}{4\cdot7}+...+\dfrac{1}{2021\cdot2024}\\ =\dfrac{1}{3}\cdot\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{2021\cdot2024}\right)\\ =\dfrac{1}{3}\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2024}\right)\\ =\dfrac{1}{3}\cdot\left(1-\dfrac{1}{2024}\right)\\ =\dfrac{1}{3}\cdot\dfrac{2023}{2024}\\ =\dfrac{2023}{6072}\)

8 tháng 7 2016

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{125}{376}\)

=>\(3\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}\right)=3.\frac{125}{376}\)

=>\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{375}{376}\)

=>\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{375}{376}\)

=>\(1-\frac{1}{x+3}=\frac{375}{376}\)

=>\(\frac{1}{x+3}=1-\frac{375}{376}\)

=>\(\frac{1}{x+3}=\frac{1}{376}\)

=>x+3=376

=>x=376-3

=>x=373

Vậy x=373

16 tháng 4 2023

1/1+4 +1/4×7 +1/7×10+.....+1/x×(x+3)=16/49

17 tháng 7 2018

Đặt biểu thức trên là A. Ta có:

3A = 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/2016/2019

3A = 1-1/4 +1/4-1/7+1/7-1/10/+ ... + 1/2016-1/2019

3A = 1-1/2019=2018/2019

A =1009/2019

17 tháng 7 2018

Ta có:

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2016.2019}\)

\(=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{2016.2019}\right)\)

\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{2016}-\frac{1}{2019}\right)\)

\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{2019}\right)\)

\(=\frac{1}{3}.\frac{2018}{2019}\)

\(=\frac{2018}{6057}\)

23 tháng 11 2016

\(A=\frac{1}{1.4}-\frac{1}{4.7}-\frac{1}{7.10}-...-\frac{1}{2011.2014}\)

\(A=\frac{1}{1.4}-\left(\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2011.2014}\right)\)

Đặt \(B=\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2011.2014}\)

\(B=\frac{1}{3}.\left(\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{2011.2014}\right)\)

\(B=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2011}-\frac{1}{2014}\right)\)

\(B=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{2014}\right)\)

\(B=\frac{1}{3}.\frac{1005}{4028}=\frac{335}{4028}\)

\(A=\frac{1}{4}-\frac{335}{4028}=\frac{168}{1007}\)

23 tháng 11 2016

A = \(\frac{1}{1.4}-\frac{1}{4.7}-\frac{1}{7.10}-...-\frac{1}{2011.2014}\)

A = 1 + \(\frac{1}{4}\) - \(\frac{1}{4}\) + \(\frac{1}{7}\) - \(\frac{1}{7}\) + \(\frac{1}{10}\) -....- \(\frac{1}{2011}\) + \(\frac{1}{2014}\)

A = 1 + \(\frac{1}{2014}\) = \(\frac{2015}{2014}\)

 

6 tháng 10 2019

Sai đề : \(\frac{1}{2011.2014}\)

\(A=\frac{1}{1.4}-\frac{1}{4.7}-\frac{1}{7.10}-...-\frac{1}{2011.2014}\)

\(A=\frac{1}{1.4}-\left(\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2011.2014}\right)\)

Đặt \(B=\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2011.2014}\)

\(B=\frac{1}{3}\left(\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{2011.2014}\right)\)

\(B=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2011}-\frac{1}{2014}\right)\)

\(B=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{2014}\right)\)

\(B=\frac{1}{3}.\frac{1005}{4028}=\frac{335}{4028}\)

\(A=\frac{1}{4}-\frac{335}{4028}=\frac{168}{1007}\)

Chúc bạn học tốt !!!

17 tháng 11 2019

b) S = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(=\frac{1}{2}.\frac{4949}{9900}\)

\(=\frac{4949}{19800}\)