Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đầu tiên chứng minh là mày không bị thiểu năng bằng cách xóa câu hỏi này đi nhé
`sqrt{x-5}+2sqrt{4x-20}-1/2sqrt{9x-45}=12`
Điều kiện:`x>=5`
`pt<=>sqrt{x-5}+2sqrt{4(x-5)}-1/2sqrt{9(x-5)}=12`
`<=>sqrt{x-5}+4sqrt{x-5}-3/2sqrt{x-5}=12`
`<=>7/2sqrt{x-5}=12`
`<=>sqrt{x-5}=24/7`
`<=>x-5=576/49`
`<=>x=821/49(Tmđk)`
Vậy `S={821/49}.`
Ta có: \(\sqrt{x-5}+2\sqrt{4x-20}-\dfrac{1}{3}\sqrt{9x-45}=12\)
\(\Leftrightarrow4\sqrt{x-5}=12\)
\(\Leftrightarrow x-5=9\)
hay x=14
\(a,=-2\sqrt{5}+9\sqrt{5}-24\sqrt{5}-\sqrt{5}=-18\sqrt{5}\)
\(b,=2\sqrt{3}-5\sqrt{3}+4\sqrt{3}-7\sqrt{3}=-6\sqrt{3}\)
\(c,=3\sqrt{3}+7\sqrt{3}-9\sqrt{3}+11\sqrt{3}=12\sqrt{3}\)
a) Ta có: \(-\sqrt{20}+3\sqrt{45}-6\sqrt{80}-\dfrac{1}{5}\sqrt{125}\)
\(=-2\sqrt{5}+9\sqrt{5}-24\sqrt{5}-\dfrac{1}{5}\cdot5\sqrt{5}\)
\(=-17\sqrt{5}-\sqrt{5}=-18\sqrt{5}\)
b) Ta có: \(2\sqrt{3}-\sqrt{75}+2\sqrt{12}-\sqrt{147}\)
\(=2\sqrt{3}-5\sqrt{3}+4\sqrt{3}-7\sqrt{3}\)
\(=-6\sqrt{3}\)
22) \(\frac{1}{\sqrt{5}+\sqrt{2}}+\frac{1}{\sqrt{5}-\sqrt{2}}\)
\(=\frac{\left(\sqrt{5}-\sqrt{2}\right)+\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)}\)
\(=\frac{2\sqrt{5}}{\sqrt{5^2}-\sqrt{2^2}}\)
\(=\frac{2\sqrt{5}}{5-2}=\frac{2\sqrt{5}}{3}\)
\(\left(\sqrt{12}+\sqrt{27}-\sqrt{18}\right)\cdot3\\ =(\sqrt{4\cdot3}+\sqrt{9\cdot3}-\sqrt{6}\cdot\sqrt{3})\cdot\sqrt{3}\\ =\left(2\sqrt{3}+3\sqrt{3}-\sqrt{6}\cdot\sqrt{3}\right)\cdot\sqrt{3}\\ =2\cdot3+3\cdot3-\sqrt{6}\cdot3\\ =6+9-3\sqrt{6}\\ =15-3\sqrt{6}\)
\(\left(15\sqrt{20}-3\sqrt{45}+2\sqrt{5}\right):\sqrt{5}\\ =\left(15\sqrt{4\cdot5}-3\sqrt{9\cdot5}+2\sqrt{5}\right):\sqrt{5}\\ =\left(30\sqrt{5}-9\sqrt{5}+2\sqrt{5}\right):\sqrt{5}\\ =30-9+2\\ =23\)