Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 26.6101 + 1
= 64.(...6) + 1
= (...4) + 1
= (...5) chia hết cho 5, là hợp số
b) Vì 2001.2002.2003.2004.2005 chia hết cho 5; 10 chia hết cho 5
nên 2001.2002.2003.2004.2005 - 10 chia hết cho 5, là hợp số
c) Ta thấy: 1991.1992.1993.1994 có tận cùng là 4
=> 1991.1992.1993.1994 + 1 có tận cùng là 5, chia hết cho 5, là hợp số
d) Ta có:
\(10\equiv1\left(mod3\right)\)
\(\Rightarrow10^{100}\equiv1\left(mod3\right)\) (1)
\(7\equiv1\left(mod3\right)\) (2)
Từ (1) và (2) \(\Rightarrow10^{100}-7⋮3\), là hợp số
e) Tổng các chữ số của 111...1 (2007 chữ số 1) là: 1 + 1 + 1 + ... + 1 = 2007 chia hết cho 3 (2007 số 1)
=> 111...11 (2007 c/s 1) chia hết cho 3, là hợp số
f) Ta có: 1111...1 (2006 c/s 1)
= 1111...1000...0 + 1111...1
(1003 c/s 1)(1003 c/s 0)(1003 c/s 1)
= 1111...1.1000...0 + 1111...1
(1003 c/s 1)(1003 c/s 0)(1003 c/s 1)
= 1111...1.1000...01 chia hết cho 1111...1, là hợp số
(1003 c/s 1)(1002 c/s 0) (1003 c/s 1)
Ta coi :
(X1)n có tận cùng là 1 nên mỗi số hạng của tổng đều tận cùng bằng 1.
Do đóï M = A1+ B1+ C1+D1+ E1+ F1+ G1 có tận cùng bằng 7 nên không là số chính phương.
Vì 11 có tận cùng là 1 => Khi nâng lên luỹ thừa bậc mấy, chữ số tận cùng vẫn bằng 1
Từ 2001 đến 2007 có 7 số hạng.
=> Chữ số tận cùng của tổng B là 1 x 7 = 7
Vì các số chính phương không thể tận cùng bằng 2, 3, 7, 8 => tổng B không thể là số chính phương.
`111....11 (2001` chữ số `1)`
Ta có:
`1+1+1+...+1+1 (2001` số hạng `1) `
`= 1 . 2001 `
Mà `2001 ⋮ 3 `
`=> 1+1+1+...+1+1 ⋮ 3 `
Hay `111...11 (2001` chữ số `1) ⋮ 3`
Mà `111...11 ⋮ 1` và chính nó
Nên `111...11 (2001` chữ số `1)` là hợp số