K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2021

334(L Y)

HỌC TỐT 👍

5 tháng 10 2021

334.

Học tốt nha!

9 tháng 9 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y' = Giải sách bài tập Toán 12 | Giải sbt Toán 12

25 tháng 5 2018

21 tháng 9 2020

để mik tạo câu hỏi rồi bạn mik nha

21 tháng 9 2020

đó là2

6 tháng 3 2019

ko bao giờ đc phép tính đúng

6 tháng 3 2019

mình ko cho bạn được 1 tháng vip đâu

13 tháng 9 2018

Đáp án C

Vì phương trình có ba nghiệm phân biệt nên đồ thị hàm số có ba đường tiệm cận đứng.

Mặt khác, ta có:

nên đường thẳng là đường tiệm cận ngang của đồ thị hàm số .

nên đường thẳng y=0 là đường tiệm cận ngang của đồ thị hàm số .

Vậy .

6 tháng 12 2017

3 tháng 12 2018

+ Sử dụng tính chất: Hàm số y= logax đồng biến trên TXĐ khi a> 1nên y= f(x)  = lnx

là hàm số đồng biến.

+ Sử dụng tính chất: Hàm số y= ax  nghịch biến trên R khi 0< a< 1nên 

Chọn C

26 tháng 11 2018

Chọn B

3 tháng 9 2023

Để tìm phương trình mặt phẳng (P) và tính bán kính đường tròn giao tuyến, ta cần tìm điểm giao giữa mặt cầu (S) và đường thẳng Δ. Đầu tiên, ta thay đổi phương trình đường thẳng Δ từ phương trình chính tắc sang phương trình tham số.

Phương trình tham số của đường thẳng Δ là: x = t y = 1 + t z = 1 + 2t

Tiếp theo, ta thay các giá trị x, y, z vào phương trình mặt cầu (S) để tìm điểm giao: (t)2 + (1 + t + 1)2 + (1 + 2t - 2)2 = 10 t2 + (t + 2)2 + (2t - 1)2 = 10 t2 + t2 + 4t + 4 + 4t2 - 4t + 1 - 10 = 0 6t2 + 4t - 5 = 0

Giải phương trình trên, ta tìm được t = 1/2 và t = -5/6. Thay t vào phương trình tham số của Δ, ta có các điểm giao là: Điểm giao thứ nhất: (1/2, 3/2, 5/2) Điểm giao thứ hai: (-5/6, 1/6, -1/6)

Tiếp theo, ta tìm phương trình mặt phẳng (P) đi qua hai điểm giao này. Sử dụng công thức phương trình mặt phẳng đi qua hai điểm: (x - x1)(y2 - y1) - (y - y1)(x2 - x1) = 0

Điểm giao thứ nhất: (1/2, 3/2, 5/2) Điểm giao thứ hai: (-5/6, 1/6, -1/6)

Thay các giá trị vào công thức, ta có: (x - 1/2)((1/6) - (3/2)) - (y - 3/2)((-5/6) - (1/2)) + (z - 5/2)((-1/6) - (3/2)) = 0 -2x + 2y - z + 4 = 0

Vậy phương trình mặt phẳng (P) là: -2x + 2y - z + 4 = 0.

Tiếp theo, để tính bán kính đường tròn giao tuyến, ta tính khoảng cách từ tâm mặt cầu đến mặt phẳng (P). Khoảng cách này chính bằng bán kính đường tròn giao tuyến.

Đặt điểm A là tâm mặt cầu (x0, y0, z0) = (0, -1, 2). Khoảng cách từ A đến mặt phẳng (P) được tính bằng công thức: d = |Ax + By + Cz + D| / sqrt(A^2 + B^2 + C^2)

Thay các giá trị vào công thức, ta có: d = |(0)(-2) + (-1)(2) + (2)(-1) + 4| / sqrt((-2)^2 + 2^2 + (-1)^2) d = 5 / sqrt(9) d = 5/3

Vậy bán kính đường tròn giao tuyến là 5/3.

Vậy đáp án đúng là: (P): -2x + 2y - z + 4 = 0; r = 5/3

7 tháng 12 2017

Hỏi đáp Toán
\(AH=HB=\dfrac{a}{2}\).
\(DH=\sqrt{\left(a\sqrt{3}\right)^2+\left(\dfrac{a}{2}\right)^2}=\dfrac{\sqrt{13}a}{2}\).
\(SH=DH.tan\widehat{SDH}=\dfrac{\sqrt{13}a}{2}.tan60^o=\dfrac{\sqrt{39}a}{2}\).
Thể tích khối chóp S.ABCD là: \(\dfrac{1}{3}.SH.S_{ABCD}=\dfrac{1}{3}.\dfrac{\sqrt{39}a}{2}.a.\sqrt{3}a=\dfrac{\sqrt{13}a^3}{2}\).