Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có hai đáp án.
đáp án thứ nhất là:687
đáp án thứ hai là: 307
k nha
a. \(\dfrac{\sqrt{2}.\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{7}.\left(\sqrt{3}+\sqrt{5}\right)}=\dfrac{\sqrt{2}}{\sqrt{7}}=\sqrt{\dfrac{2}{7}}\)
d. \(\dfrac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}=\dfrac{\sqrt{5-2\sqrt{5}+1}}{\sqrt{5}-1}=\dfrac{\left(\sqrt{5}-1\right)^2}{\sqrt{5}-1}=\sqrt{5}-1\)
d: \(D=\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{9\left(x^2+2xy+y^2\right)}{4}}\)
\(=\dfrac{2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{3\left(x+y\right)}{2}\)
\(=\dfrac{3}{x-y}\)
d: \(=\dfrac{\left(\sqrt{3}+1\right)^2}{\sqrt{3}+1}=\sqrt{3}+1\)
e: \(=\sqrt{3+\sqrt{3}+\sqrt{3}+1}=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
a) \(\dfrac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}=\dfrac{\sqrt{2}\sqrt{3}+\sqrt{2}\sqrt{5}}{\sqrt{7}\sqrt{3}+\sqrt{7}\sqrt{5}}\)
= \(\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{7}\left(\sqrt{3}+\sqrt{5}\right)}=\dfrac{\sqrt{2}}{\sqrt{7}}=\sqrt{\dfrac{2}{7}}\)
b) \(\dfrac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}=\dfrac{9\sqrt{5}+9\sqrt{3}}{3\sqrt{3}+3\sqrt{5}}=3\dfrac{3\sqrt{3}+3\sqrt{5}}{3\sqrt{3}+3\sqrt{5}}=3.1=3\)
c) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
= \(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)-\sqrt{3}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
= \(1-\sqrt{3}\)
P/s: bạn làm thêm bước nữa nha, mình lười, hehe
d) \(\dfrac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}=\dfrac{\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}.1+1^2}}{\sqrt{5}-1}\)
\(=\dfrac{\sqrt{\left(\sqrt{5-1}\right)^2}}{\sqrt{5}-1}=\dfrac{\left|\sqrt{5}-1\right|}{\sqrt{5}-1}=\dfrac{\sqrt{5}-1}{\sqrt{5}-1}=1\)
10 = 1
Tk mik nha
10=10