K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2024

A = (\(\dfrac{1}{100}\) - 12).(\(\dfrac{1}{100}\) - \(\dfrac{1}{2^2}\)).(\(\dfrac{1}{100}\) - \(\dfrac{1}{3^2}\))...(\(\dfrac{1}{100}\) - \(\dfrac{1}{20^2}\))

A = (\(\dfrac{1}{10^2}\) - 12).(\(\dfrac{1}{10^2}\) - \(\dfrac{1}{2^2}\)).(\(\dfrac{1}{10^2}\) - \(\dfrac{1}{3^2}\))..(\(\dfrac{1}{10^2}\) - \(\dfrac{1}{10^2}\))....(\(\dfrac{1}{10^2}\) - \(\dfrac{1}{20^2}\))

A = (\(\dfrac{1}{10^2}\) - 12).(\(\dfrac{1}{10^2}\) - \(\dfrac{1}{2^2}\)).(\(\dfrac{1}{10^2}\) - \(\dfrac{1}{3^2}\))...0.(\(\dfrac{1}{10^2}\) - \(\dfrac{1}{20^2}\))

A = 0

16 tháng 9 2017

chắc đúng rồi k sai đâu

16 tháng 9 2017

dung sai deo biet

AH
Akai Haruma
Giáo viên
25 tháng 10 2018

\(B=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)

\(\Rightarrow 5B=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)

Trừ theo vế:

\(5B-B=(5+5^2+5^3+5^4+...+5^{2009}+5^{2010})-(1+5+5^2+...+5^{2009})\)

\(4B=5^{2010}-1\)

\(B=\frac{5^{2010}-1}{4}\)

AH
Akai Haruma
Giáo viên
25 tháng 10 2018

\(S=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+..+\frac{3^{n-1}+1}{2}\)

\(=\frac{3^0+3^1+3^2+...+3^{n-1}}{2}+\frac{\underbrace{1+1+...+1}_{n}}{2}\)

\(=\frac{3^0+3^1+3^2+..+3^{n-1}}{2}+\frac{n}{2}\)

Đặt \(X=3^0+3^1+3^2+..+3^{n-1}\)

\(\Rightarrow 3X=3^1+3^2+3^3+...+3^{n}\)

Trừ theo vế:

\(3X-X=3^n-3^0=3^n-1\)

\(\Rightarrow X=\frac{3^n-1}{2}\). Do đó \(S=\frac{3^n-1}{4}+\frac{n}{2}\)