Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (3x + 5) - 3x chia hết cho x =>5 chia hết cho x hay x Î Ư(5) = {- 5; -1; 1;5}.
b) (4x + 11) - 2 (2x + 3) chia hết cho (2x + 3) => 5 chia hết cho (2x + 3)
=> 2x + 3 Î Ư(5) = {-5; -l; l; 5}. Từ đó tìm được x Î {-4; -2; -l; l}.
c) x (x + 2) - 11chia hết cho (x + 2) => 11 chia hết cho (x + 2)
=> x + 2 ÎƯ (11) = {-11;-1 ;1 ; 11}.
Từ đó tìm được x Î {-13; -3; -l; 9}.
a: \(3x+1\in\left\{1;10;2;5\right\}\)
\(\Leftrightarrow3x\in\left\{0;9;1;4\right\}\)
hay \(x\in\left\{0;3;\dfrac{1}{3};\dfrac{4}{3}\right\}\)
b: \(x+3\in\left\{3;4;6;12\right\}\)
hay \(x\in\left\{0;1;3;9\right\}\)
\(a,2x+1⋮x-2\)
\(=>2.\left(x-2\right)+5⋮x-2\)
Do \(2.\left(x-2\right)⋮x-2\)
\(=>5⋮x-2\)
\(=>x-2\inƯ\left(5\right)\)
Nên ta có bảng sau :
x-2 | 1 | 5 | -1 | -5 |
x | 3 | 7 | 1 | -3 |
Vậy ...
\(b,3x+5⋮x\)
Do \(3x⋮x=>5⋮x\)
\(=>x\inƯ\left(5\right)\)
Nên ta có bảng sau :
x | 1 | 5 | -1 | -5 |
Vậy ...
\(c,4x+1⋮2x+3\)
\(=>2.\left(2x+3\right)-5⋮2x+3\)
Do \(2.\left(2x+3\right)⋮2x+3\)
\(=>5⋮2x+3\)
\(=>2x+3\inƯ\left(5\right)\)
Nên ta có bảng sau :
2x+3 | 1 | 5 | -1 | -5 |
2x | -2 | 2 | -4 | -8 |
x | -1 | 1 | -2 | -4 |
Vậy ...
a) Ta có: 2x+1=2(x-2)+5
Để 2x+1 chia hết cho x-2 thì 2(x-2)+5 chia hết cho x-2
Vì 2(x-2) chia hết cho x-2
=> 5 chia hết cho x-2
Vì x thuộc Z => z-2 thuộc Ư (5)={-5;-1;1;5}
Nếu x-2=-5 => x=-3
Nếu x-2=-1 => x=1
Nếu x-2=1 => x=3
Nếu x-1=5 => x=6
b) Ta có 3x chia hết cho x với mọi x
=> Để 3x+5 chia hết cho x thì 5 chia hết cho x
Vì x thuộc Z => x thuộc Ư (5)={-5;-1;1;5}
c) Ta có: 4x+11=2(2x+3)+5
Để 4x+11 chia hết cho 2x+3 thì 2(2x+3)+5 chia hết cho 2x+3
Vì 2(2x+3) chia hết cho 2x+3 => 5 chia hết cho 2x+3
Vì x thuộc Z => 2x+3 thuộc Ư (5)={-5;-1;1;5}
Nếu 2x+3=-5 => 2x=-8 => x=-4
Nếu 2x+3=-1 => 2x=-4 => x=-2
Nếu 2x+3=1 => 2x=-2 => x=-1
Nếu 2x+3=5 => 2x=2 => x=1
Ta có :
a - b chia hết cho 11, suy ra a chia hết cho 11 và b chia hết cho 11 ( 1 )
=> 3a chia hết cho 11 và 11b chia hết cho 11 ( 2 )
Từ ( 1 ) và ( 2 ) suy ra nếu ( a - b ) chia hết cho 11 thì ( 3 x a + 11 x b ) chia hết cho 11.
1>
Ta thấy:Các số 21,135,351 đều chia hết cho 3
\(\Rightarrow\) Điều kiện để A chia hết cho 3 là : x là số chia hết cho 3
Điều kiện để A không chia hết cho 3 là : x là số không chia hết cho 3
2>
Ta thấy:Các số 33,132,165 đều chia hết cho 11
\(\Rightarrow\)Điều kiện để A chia hết cho 11 là : x là số chia hết cho 11
Điều kiện để A không chia hết cho 11 là : x là số không chia hết cho 11
a) 10 chia hết cho 3x + 1
=> 3x + 1 \(\in\) Ư(10)
=> 3x \(\in\) Ư (9)
=> x \(\in\)Ư (3)
=> x \(\in\) {1;-1;3;-3}
b) x + 11 chia hết cho x + 1
=> x + 1 + 10 chia hết cho x + 1
=> 10 chia hết cho x + 1
=> x + 1 thuộc Ư (10)
=> x thuộc Ư (9) {1;3;9;-1;-3;-9}
cíu dớiii
-11 chia hết cho x+3
=> x+3 thuộc Ư(-11)={±1;±11}
=> x thuộc {-4;-2;-14;8}