Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6: \(\Leftrightarrow2x^2+3x+9+\sqrt{2x^2+3x+9}-42=0\)
Đặt \(\sqrt{2x^2+3x+9}=a\left(a>=0\right)\)
Phương trình sẽ trở thành là: a^2+a-42=0
=>(a+7)(a-6)=0
=>a=-7(loại) hoặc a=6(nhận)
=>2x^2+3x+9=36
=>2x^2+3x-27=0
=>2x^2+9x-6x-27=0
=>(2x+9)(x-3)=0
=>x=3 hoặc x=-9/2
8: \(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
=>\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
=>\(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\)
Bài 1:
Ta có: \(\left(3\sqrt{50}-5\sqrt{18}+3\sqrt{8}\right)\cdot\sqrt{2}\)
\(=\left(15\sqrt{2}-15\sqrt{2}+6\sqrt{2}\right)\cdot\sqrt{2}\)
\(=6\sqrt{2}\cdot\sqrt{2}\)
=12
Bài 2:
1) ĐKXĐ: \(x\le0\)
2) ĐKXĐ: \(x\le2\)
3) ĐKXĐ: \(x>\dfrac{-3}{2}\)
4) ĐKXĐ: x>0
5) ĐKXĐ: x<3
1/ Đặt \(\sqrt{x^2+2}=t>0\Rightarrow x^2=t^2-2\)
\(t^2-2+\left(3-t\right)x-1-2t=0\)
\(\Leftrightarrow t^2-2t-3-\left(t-3\right)x=0\)
\(\Leftrightarrow\left(t-3\right)\left(t+1\right)-\left(t-3\right)x=0\)
\(\Leftrightarrow\left(t-3\right)\left(t+1-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t-3=0\\t+1-x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}t=3\\t=x-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2}=3\left(1\right)\\\sqrt{x^2+2}=x-1\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^2=7\Rightarrow x=\pm\sqrt{7}\)
\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x^2+2=\left(x-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2+2=x^2-2x+1\end{matrix}\right.\) \(\Rightarrow x=\dfrac{-1}{2}\left(l\right)\)
Vậy nghiệm pt là \(x=\pm\sqrt{7}\)
2/
\(x^2+3-6x\sqrt{x^2+3}+9x^2-\sqrt{x^2+3}+3x-2=0\)
\(\Leftrightarrow\left(\sqrt{x^2+3}-3x\right)^2-\left(\sqrt{x^2+3}-3x\right)-2=0\)
Đặt \(\sqrt{x^2+3}-3x=t\)
\(\Rightarrow t^2-t-2=0\) \(\Rightarrow\left[{}\begin{matrix}t=-1\\t=2\end{matrix}\right.\)
TH1: \(\sqrt{x^2+3}-3x=-1\Rightarrow\sqrt{x^2+3}=3x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-1\ge0\\x^2+3=\left(3x-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\8x^2-6x-2=0\end{matrix}\right.\) \(\Rightarrow x=1\)
TH2: \(\sqrt{x^2+3}-3x=2\Leftrightarrow\sqrt{x^2+3}=3x+2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-2}{3}\\x^2+3=\left(3x+2\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-2}{3}\\8x^2+12x+1=0\end{matrix}\right.\) \(\Rightarrow x=\dfrac{-3+\sqrt{7}}{4}\)
3/ ĐKXĐ: \(\dfrac{3}{2}\le x\le\dfrac{5}{2}\)
\(1.\sqrt{2x-3}+1.\sqrt{5-2x}\le\sqrt{\left(1^2+1^2\right)\left(2x-3+5-2x\right)}=2\)
\(\Rightarrow VT\le2\)
\(VP=3\left(x^2-4x+4\right)+2=3\left(x-2\right)^2+2\ge2\)
\(\Rightarrow VT=VP\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\2x-3=5-2x\end{matrix}\right.\) \(\Rightarrow x=2\)
Vậy pt có nghiệm duy nhất \(x=2\)
4/
ĐKXĐ: \(x\ge\dfrac{-5}{4}\)
\(x^2-2x+1+4x+5-6\sqrt{4x+5}+9=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{4x+5}-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\sqrt{4x+5}-3=0\end{matrix}\right.\) \(\Rightarrow x=1\)
Vậy pt có nghiệm duy nhất \(x=1\)
1. \(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x}-2\right|+\left|3-\sqrt{x}\right|=1\)
+ Ta có : \(\left|\sqrt{x}-2\right|+\left|3-\sqrt{x}\right|\ge\left|\sqrt{x}-2+3-\sqrt{x}\right|=1\)
Dấu "=" \(\Leftrightarrow\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)\ge0\)
\(\Leftrightarrow2\le\sqrt{x}\le3\Leftrightarrow4\le x\le9\)
2. + \(ĐK:4-2x-x^2\ge0\)
+ VT = \(\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+9}\)
\(=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\) \(\ge\sqrt{4}+\sqrt{9}=5\) (1)
Dấu "=" \(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)
+ VP \(=-\left(x^2+2x+1\right)+5=-\left(x+1\right)^2+5\le5\forall x\) (2)
Dấu "=" \(\Leftrightarrow x=-1\)
+ Từ (1) và (2) suy ra : pt \(\Leftrightarrow VT=VP=5\Leftrightarrow x=-1\) (TM)
3. + TH1: \(x< 0\) ta có :
\(VT< \sqrt[3]{2.0+1}+\sqrt[3]{0}=1\) ( KTM )
+ TH2 : x = 0 ta có :
\(VT=\sqrt[3]{1}+\sqrt[3]{0}=1\) ( TM )
+ TH3 : x > 0 ta có :
\(VT>\sqrt[3]{2.0+1}+\sqrt[3]{0}=1\) ( KTM )
Vậy x = 0 là nghiệm duy nhất của pt
4. \(\Leftrightarrow\left(x-1\right)\left(x+4\right)\left(x-2\right)\left(x+3\right)-24=0\)
\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2+2x-8\right)-24=0\)
\(\Leftrightarrow t\left(t-5\right)-24=0\) ( với \(t=x^2+2x-3\) )
\(\Leftrightarrow t^2-5t-24=0\Leftrightarrow\left(t+3\right)\left(t-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-3\\t=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+2x-3=-3\\x^2+2x-3=8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\left(x+2\right)=0\\\left(x+1\right)^2=12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=2\sqrt{3}-1\\x=-2\sqrt{3}-1\end{matrix}\right.\) ( TM )
ĐKXĐ: \(\left[{}\begin{matrix}x\ge\dfrac{1}{\sqrt{2}}\\x\le-\dfrac{1}{\sqrt{2}}\end{matrix}\right.\)
Pt\(\Leftrightarrow8x^2-4-2\left(3x+1\right)\sqrt{2x^2-1}+2x^2+3x-2=0\)
\(\Leftrightarrow4\left(2x^2-1\right)-2\left(3x+1\right)\sqrt{2x^2-1}+2x^2+3x-2=0\)
Đặt \(\sqrt{2x^2-1}=t\)
\(\Rightarrow4t^2-2\left(3x+1\right)t+2x^2+3x-2=0\)
Coi pt trên là pt bậc 2 ẩn t tham số x, ta có:
\(\Delta'=\left(3x+1\right)^2-4\left(2x^2+3x-2\right)=x^2-6x+9=\left(x-3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{3x+1+x-3}{4}=\dfrac{2x-1}{2}\\t=\dfrac{3x+1-\left(x-3\right)}{4}=\dfrac{x+2}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{2x^2-1}=\dfrac{2x-1}{2}\\\sqrt{2x^2-1}=\dfrac{x+2}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{2x^2-1}=2x-1\left(\text{với }x\ge\dfrac{1}{2}\right)\\2\sqrt{2x^2-1}=x+2\left(\text{với }x\ge-2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4\left(2x^2-1\right)=\left(2x-1\right)^2\left(\text{với }x\ge\dfrac{1}{2}\right)\\4\left(2x^2-1\right)=\left(x+2\right)^2\left(\text{với }x\ge-2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x^2+4x-5=0\left(\text{với }x\ge\dfrac{1}{2}\right)\\7x^2-4x-8=0\left(\text{với }x\ge-2\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1+\sqrt{6}}{2}\\x=\dfrac{-1-\sqrt{6}}{2}< \dfrac{1}{2}\left(loại\right)\\x=\dfrac{2+2\sqrt{15}}{7}\\x=\dfrac{2-2\sqrt{15}}{7}\end{matrix}\right.\)