Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>-2x=90/91
hay x=-45/91
b: =>2x=-7
hay x=-7/2
c: ->-3x=-12
hay x=4
Bài 2:
a: Để A là phân số thì n-1<>0
hay n<>1
b: Để A là số nguyên thì \(n-1\in\left\{1;-1\right\}\)
hay \(n\in\left\{2;0\right\}\)
ta có:\(A=\frac{8^9+12}{8^9+7}=\frac{8^9+7+5}{8^9+7}=\frac{8^9+7}{8^9+7}+\frac{5}{8^9+7}=1+\frac{5}{8^9+7}\)
\(B=\frac{8^{10}+4}{8^{10}-1}=\frac{8^{10}-1+5}{8^{10}-1}=\frac{8^{10}-1}{8^{10}-1}+\frac{5}{8^{10}-1}=1+\frac{5}{8^{10}-1}\)
vì 810-1>89+7
\(\Rightarrow\frac{5}{8^{10}-1}<\frac{5}{8^9+7}\)
\(\Rightarrow1+\frac{5}{8^{10}-1}<1+\frac{5}{8^9+7}\)
=>A<B
Do các số nguyên tố đều lớn hơn 1
\(\Rightarrow x^y>1\Rightarrow z-1>1\Rightarrow z>2\Rightarrow z\) lẻ
\(\Rightarrow z-1\) chẵn
\(\Rightarrow x^y\) chẵn \(\Rightarrow x\) chẵn \(\Rightarrow x=2\)
Pt trở thành: \(2^y=z-1\Rightarrow z=2^y+1\)
- Với \(y=2\Rightarrow z=5\) là SNT (thỏa mãn)
- Với \(y>2\Rightarrow y\) lẻ, đặt \(y=2k+1\) với \(k\ge1\)
\(\Rightarrow z=2^{2k+1}+1=2.4^k+1\)
Hiển nhiên \(z>3\), đồng thời do \(4\equiv1\left(mod3\right)\Rightarrow4^k\equiv1\left(mod3\right)\Rightarrow2.4^k\equiv2\left(mod3\right)\)
\(\Rightarrow2.4^k+1\equiv0\left(mod3\right)\)
\(\Rightarrow z⋮3\) mà \(z>3\Rightarrow z\) là hợp số (ktm)
Vậy \(\left(x;y;z\right)=\left(2;2;5\right)\)
\(\dfrac{-10}{15}=\dfrac{x}{9}=\dfrac{-8}{y}=\dfrac{z}{-21}\)
có: \(\dfrac{-10}{15}=\dfrac{x}{9}\\ =>15x=-90\\ =>x=-6\)
có
\(\dfrac{-6}{9}=\dfrac{-8}{y}\\ =>-6y=-72\\ =>y=12\)
có:
\(\dfrac{-8}{12}=\dfrac{z}{-21}\\ =>12z=168\\ =>z=14\)